
Barcelona School of Informatics (FIB)

Master in Information Technology

Improving Acquia Search and the Apache Solr

Search Integration Drupal Module

by

Nick VEENHOF

Supervisor: B. Chris BROOKINS

Co-Supervisor: Dr. Ir. Peter WOLANIN

Tutor/Professor: Prof. Dr. Carles FARRÉ TOST

Academic Year 2011–2012

License Statement

This work is licensed under the NonCommercialAcknowledgementWithoutDerivedWork license

from Creative Commons. This license, which is the most restrictive from Creative Commons,

doesn’t allow derived works, and authorizes, in all cases, the reproduction, distribution and

public communication of the work as long as its author is mentioned and as no commercial use

is done.

Nick Veenhof, February 2012

Improving Acquia search and the Apache

Solr Module
by

Nick VEENHOF

Master Thesis in order to acquire a Master in Information Technology

Academic Year 2011–2012

Supervisor: B. Chris BROOKINS

Co-Supervisor: Dr. Ir. Peter WOLANIN

Tutor/Professor: Prof. Dr. Ir. Carles FARRÉ TOST

Barcelona School of Informatics (FIB)

Master in Information Technology

BarcelonaTech

Abstract

This work is intended to show the upgrade process of a module on drupal.org using community

tools. This study was performed as part of an internship at Acquia Inc during a period of 5

months. More specifically it was focussed on creating a stable release of the Apache Solr Search

Integration Module for Drupal 7 and eventually also backport this to Drupal 6. Firstly there was

an analysis state and a brief introduction to how the system worked and how to co-operate with

an existing Open Source community. From this, existing problems were identified and thrown

in a roadmap. Community projects have a very dynamic rhythm and issues could rise up or

get resolved because thousands of persons had access to the code base. These challenges are

described and tips are given on how to cope with such a dynamic development process. This

study also describes the challenges of a backport and how to resolve them. Finally, there is an

explanation of the Acquia Search service and the process to upgrade the server park from Solr

1.4 to Solr 3.x (initially 3.4, finally 3.5) that includes the process of writing a Java servlet for

managing authentication over rest services using RFC2104 HMAC encryption.

Keywords

Drupal, Apache Solr, Lucene, Acquia, Acquia Search, Acquia Network, Search Technology

CONTENTS i

Contents

1 Introduction 1

1.1 Web and Search . 1

1.2 Open Source & Community . 2

1.3 Personal History . 4

2 Objectives 6

3 Description 8

3.1 Acquia . 8

3.2 Apache Solr . 9

3.3 Drupal . 10

4 Exploration 12

4.1 Apache Solr . 12

4.2 Standard Drupal Search . 25

4.3 Apache Solr Search Integration Drupal Module 26

4.4 Facetapi Drupal module . 32

4.5 Acquia Search for Drupal 6 and 7 . 37

5 Implementation 42

5.1 Communication . 42

5.1.1 Daily communication . 43

5.1.2 Drupal Camps and seminars . 44

5.1.3 Blog Posts . 45

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 46

5.2.1 Search Environments . 46

CONTENTS ii

5.2.2 Search pages . 52

5.2.3 Query Object . 60

5.2.4 Entity layer . 64

5.2.5 Performance optimizations . 65

5.3 Facet Api module for Drupal 7 version 7.x-1.0 . 67

5.3.1 Facet Query Types . 67

5.4 Backporting Facet API And Apache Solr to Drupal 6 69

5.5 Acquia Search Upgrade from 1.4 to 3.x . 71

5.5.1 Java Filter Servlet . 72

5.5.2 Performance testing . 73

5.6 Additional Modules created to empower users to use the Apache Solr Module suite 78

5.6.1 Facet Api Slider . 78

5.6.2 Apache Solr Term . 78

5.6.3 Apache Solr Commerce . 78

5.6.4 Apache Solr User . 79

5.6.5 Apache Solr Sort UI . 79

6 Related Work 80

6.1 Elastic Search . 80

6.1.1 Sphinx . 81

6.2 Search API . 82

6.3 Google . 83

7 Conclusions 85

7.1 Reflection on Apache Solr . 85

7.2 Reflection on Drupal 6 and Drupal 7 in regards to search integration 86

7.3 Timeline . 87

7.4 Future Work . 87

7.4.1 Apache Solr Search Integration . 87

7.4.2 Acquia Search . 88

8 Feedback from the mentors at Acquia 89

8.1 Chris Brookins . 89

8.2 Peter Wolanin . 90

CONTENTS iii

9 Acknowledgements 92

INTRODUCTION 1

Chapter 1

Introduction

1.1 Web and Search

It wouldn’t be wrong to start with a quote from the famous paper of Sergey Brin and Lawrence

Page. ”The web creates new challenges for information retrieval. The amount of information on

the web is growing rapidly, as well as the number of new users inexperienced in the art of web

research. People are likely to surf the web using its link graph” [Brin and Page(1998)]. In my

personal opinion I also experienced that people ”Google” more and more and this phenomenon

intrigued me and many others. The web won’t stop growing and content is added in amounts

that we can’t imagine. Even though Google does its very best to index every piece of content

it still lacks a personalized search system that allows you to, in a more customizable way, find

data as the end-user. You, as a reader, will probably already have searched in depth in a search

engine other than Google. For example, ebay.com has a very specific search engine that allows

their customers to find products and goods that are are exactly what the user is searching for

by narrowing down the results using Facets. 1

Another missing piece in the search part of the global web is the ability to search in restricted

content. Say, for example, an intranet can’t benefit from a global search, hence a search engine

that indexes content in a customized way is necessary.

A numerous amount of projects 2allow you to customize the indexing process while still

1A faceted classification system allows the assignment of an object to multiple characteristics (attributes),

enabling the classification to be ordered in multiple ways, rather than in a single, predetermined, taxonomic

order. For example, a collection of books might be classified using an author facet, a subject facet, a date facet,

etc.
2http://en.wikipedia.org/wiki/List_of_enterprise_search_vendors has a list with most of the current

http://en.wikipedia.org/wiki/List_of_enterprise_search_vendors

1.2 Open Source & Community 2

supporting hundreds of thousands documents 3 which contains fields 4 with customized data.

Creating an application that includes integration with access permissions is not easy but it is

do-able.

1.2 Open Source & Community

This work is the result of many hours of hard work (over a thousand) and not only from myself,

as the author, but also from a complete community. These communities have changed the way

how we look a t software. In programming classes in university a student is taught a different

way of designing software, the control of this process is fully his. There are numerous courses

going from basic Java to Advanced Web Technologies to IBM rational rose project management

in the FIB department of the UPC. While you can learn a ton from these courses it is never

enough and whereas by being an active member of a community the obligation you have to

follow and participate in life-long learning is fulfilled. Every day there might be an aha-erlebnis

5 or frustrations but in the end it is worthwhile for the personal evolution.

Also, since this topic is about Search Applications and Web Applications we only focus on

Open Source tools that help us in achieving our goals. See section 3 on page 8 to find out more

about the specifics of these tools and why these tools were chosen.

Working in a community is, similarly, another way of creating solutions for a set of existing

problems but involves a different way of making decisions and looking at software. It is great

if the code that is written can be shared and is being used by thousands of people and can

be corrected by those same group of people. While code will never be perfect, different people

have used the same codebase to solve existing problems and they have been saving time and

resources. The company where this thesis was executed, Acquia 6, is doing an fantastic job in

supporting these very necessary skills and promoting shared knowledge.

As Dries Buytaert, the man who initially built Drupal and founded Acquia, once said :

First, Open Source adoption in the enterprise is trending at an incredible rate –

Drupal adoption has grown a lot in 2009 but we saw by far the biggest relative growth

enterprise search solutions
3A document is a sequence of fields
4A field is a named sequence of terms
5An insight that manifests itself suddenly, such as understanding how to solve a difficult problem, is sometimes

called by the German word Aha-Erlebnis. It is also known as an epiphany.
6http://www.acquia.com

http://www.acquia.com

1.2 Open Source & Community 3

in the enterprise. Fueling this movement is the notion that Open Source options

present an innovative, economically friendly and more secure alternative to their

costly proprietary counterparts. Second, Cloud Computing is a transformational

movement in that it enables continual innovation and updating - not to mention a

highly expandable infrastructure that will reduce the burden on your IT team.

It is no surprise that Acquia’s strategy is closely aligned with those two trends:

Drupal Gardens, Acquia Hosting and Acquia Search are all built on Open Source

tools and delivered as Software as a Service in the cloud. Combining Open Source

tools and Cloud Computing makes for the perfect storm for success. It provides real

value to end-users and it enables companies to monetize Open Source. It creates a

win-win situation. 7

This quote mentions Acquia Search, the service that combines Apache Solr (the chosen search

engine in this work) and Drupal to provide a superior search solution as a service especially

focussed on integrating Drupal with Apache Solr in the Cloud. Everything that is done to

improve this has also been open sourced, including this work.

Drupal and all contributed files hosted on Drupal.org are licensed under the GNU General

Public License, version 2 or later. That means you are free to download, reuse, modify, and

distribute any files hosted in Drupal.org’s Git repositories under the terms of either the GPL

version 2 or version 3, and to run Drupal in combination with any code with any license that

is compatible with either versions 2 or 3, such as the Affero General Public License (AGPL)

version 3. 8

Apache Solr is licensed under the Apache License 2.0. Like any free software license, the

Apache License allows the user of the software the freedom to use the software for any purpose,

to distribute it, to modify it, and to distribute modified versions of the software, under the terms

of the license. The Apache License, like most other permissive licenses, does not require modified

versions of the software to be distributed using the same license (in contrast to copyleft licenses

such as the Drupal license). In every licensed file, any original copyright, patent, trademark,

and attribution notices in redistributed code must be preserved (excluding notices that do not

pertain to any part of the derivative works); and, in every licensed file changed, a notification

must be added stating that changes have been made to that file. 9

7http://buytaert.net/open-source-in-the-enterprise-and-in-the-cloud
8http://www.gnu.org/licenses/gpl-2.0.html
9http://www.apache.org/licenses/LICENSE-2.0.html

http://buytaert.net/open-source-in-the-enterprise-and-in-the-cloud
http://www.gnu.org/licenses/gpl-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html

1.3 Personal History 4

1.3 Personal History

My story with Drupal starts in the beginning of 2007. I’ve done my Bachelor degree at the

Catholic University of Ghent10. During the second year of my Bachelor I was asked, together

with two other people, to make a community site in Drupal to see what it was capable of. This

was created in Drupal 5 and while it wasn’t as powerful as it is now we were already able to

integrate LDAP into the website and customize it to our needs. I do have to admit that we, as

a group, made numerous mistakes against the ethics of customizing Drupal. 11

I finished my bachelor and started looking for a job. Ultimately I ended up with a small

company called Krimson 12. This company taught me the correct way of programming Drupal

and immediately they said : ”You can start with Drupal 6, it is very new and way better

compared to the previous version”. And so I did, I started creating websites full of interactivity

and community, backends that connect directly to databases running on a mainframe and even

planted the initial seed of interest in search (Solr) that later would appear to grow out as this

thesis topic. That website is still active on the address of http://www.kortingsreus.nl. It is

also there that I created my first Drupal module, namely apachesolr ubercart 13

Sensing that I lacked some academic background I enrolled at the UPC 14 for a masters degree

in computer science and started to work half-time at Ateneatech 15 and later for AT-Sistemas 16

as one of the reference engineers for a huge Solr and Drupal powered website 17. Louis Toubes,

one of the lead engineers, was able to give a small reference : “Nick tiene una capacidad innata

de aprender por śı solo nuevas tecnologias y lo más importante es que el disfruta con ello. Sin

duda, Nick es una de esas personas que desde el primer momento que la conoces sabes que

aprenderás mucho de él.” Translation into English: Nick has the innate capacity not only to

learn about new technologies but more importantly to truly enjoy them. Nick is without a doubt

one of these people whom you know of, at first sight, that you’ll be learning a lot from him.

10http://www.kaho.be
11http://drupal.org/coding-standards
12http://www.krimson.be
13http://drupal.org/project/apachesolr_ubercart
14http://www.upc.edu/
15http://ateneatech.com/
16http://atsistemas.com/
17http://www.elsevier.es

http://www.kortingsreus.nl
http://www.kaho.be
http://drupal.org/coding-standards
http://www.krimson.be
http://drupal.org/project/apachesolr_ubercart
http://www.upc.edu/
http://ateneatech.com/
http://atsistemas.com/
http://www.elsevier.es

1.3 Personal History 5

During my studies at UPC I kept following the Drupal development and had lengthy discus-

sions with people and teachers on how software engineering should look at these projects. In the

course of Advanced Web Technologies (DSBW) I even presented Drupal in classes : ”Drupal as

a framework” 18

There was only one logical step possible as my next step and that was doing an internship/the-

sis with Acquia. During my Erasmus period in Portugal I attended a Drupal Camp and I was

also a guest speaker at the conference 19 and there I met Robert Douglas, one of the creators

of the Apache Solr Integration Project for Drupal and approached him with the question if I

would be able to do my internship with Acquia. After a long process with the UPC and with

Acquia everything was set and the pieces of the puzzle fell into place.

At present I still don’t fully comprehend what Drupal and all its derivatives are capable of

since it keeps evolving and growing. And that’s good because it gives me a chance to grow as

a person and it keeps me up to date with most of the latest web technologies. This thesis is a

piece in the puzzle I tried to make during my short time involved with these concepts.

18http://prezi.com/10_1ssdjroao/
19http://lisboa2011.drupal-pt.org/sessoes/apachesolr-the-complete-search-solution

http://prezi.com/10_1ssdjroao/
http://lisboa2011.drupal-pt.org/sessoes/apachesolr-the-complete-search-solution

OBJECTIVES 6

Chapter 2

Objectives

This chapter describes what was asked from the student and a broad overview of the goals

he should achieve. These objectives have been agreed upon the start of the internship and are

expected that those can be reasonably achieved within the agreed timeframe of 4-5 months. In

general, an objective is broader in scope than a goal, and may consist of several individual goals.

Those individual goals will be explained in detail in future chapters.

The student will be asked to be on-site at the headquarters in Boston for a couple of weeks in

order to meet the team and to get to know the company in order to gather all the information

necessary to reach the objectives set further in this document. He will follow and join meetings

to obtain a good insight in the requirements of the project and learn how to work under a

Agile/Scrum based development methodology.

Being responsible for improving the Drupal Apache Solr search integration 1 project and

the Acquia Search service is the common theme of the whole internship. This means adding

additional features, keeping high quality and create upgrades and updates. The objective will

be to exploit as much as possible from the latest Apache Solr 3.x branch while merging and

keeping the software compatible with Apache Solr 1.4.

Communication will be a crucial part in order to succeed. The project has a worldwide scope,

reaching out to more companies then just Acquia. This means he will have to be able to consult

and make decisions after talking with a lot of end-users and other stakeholders. English will be

the language of choice. This can happen by means of chat (IRC), on the Drupal community

1drupal.org/project/apachesolr

drupal.org/project/apachesolr

OBJECTIVES 7

website [?], giving presentations in conferences or taking interviews. Finally the ability to work

remotely, over a large distance and in a team, is an important skill to acquire.

Roadmap

• Bring Apache Solr 2 for Drupal 7 to a stable Release Candidate.

• Bring Facet Api 3 for Drupal 7 to a stable Release Candidate.

• Update the Acquia Search service 4 to the latest stable Apache Solr version. Upgrade the

custom java code that was written to be able to authenticate customers.

• Backport to a new Drupal 6 branch all the new features that have been programmed into

the Drupal 7 version of the Apache Solr Search Integration Module. This includes the

backporting of the multisite module.

• Achieve mastery of the agile/scrum process, the open source software engineering methods,

and the team communication processes used by Acquia.

• Empower the community to use the Apache Solr Search Integration project by means of

Presentations, Blog posts and other interactions with community members.

• Create a multisite module to search between 2 or more Drupal sites or integrate this into

the existing modules.

2drupal.org/project/apachesolr
3drupal.org/project/facetapi
4http://www.acquia.com/products-services/acquia-network/cloud-services/acquia-search

drupal.org/project/apachesolr
drupal.org/project/facetapi
http://www.acquia.com/products-services/acquia-network/cloud-services/acquia-search

DESCRIPTION 8

Chapter 3

Description

This chapter gives a short overview of technical concepts used in this work. It is not intended

to be exhaustive and references are given for further reading

3.1 Acquia

Acquia is a commercial open source software company providing products, services, and tech-

nical support for the open source Drupal social publishing system and was founded by Dries

Buytaert, the original creator and project lead of the Drupal project. With over two million

downloads since inception, Drupal is used by web developers worldwide to build sophisticated

community websites. Diverse organizations use Drupal as their core social publishing system for

external facing websites and internal collaboration applications.

Acquia Search1 is a plug-and-play service within the Acquia Network 2, built on Apache Solr

3 and is available for any Drupal 6 or Drupal 7 site. Acquia Search offers site visitors faceted

search navigation and content recommendations to help them find valuable information faster.

It is a fully redundant, high performance cloud service, with no software to install or servers to

manage.

1http://acquia.com/products-services/acquia-search
2http://www.acquia.com/products-services/acquia-network
3http://drupal.org/project/apachesolr

http://acquia.com/products-services/acquia-search
http://www.acquia.com/products-services/acquia-network
http://drupal.org/project/apachesolr

3.2 Apache Solr 9

3.2 Apache Solr

Apache Solr is an open source enterprise search platform created on top of the Apache Lucene

project. Its major features include powerful full-text search, hit highlighting, faceted search,

dynamic clustering, database integration, and rich document (e.g., Word, PDF) handling. Pro-

viding distributed search and index replication, Solr is highly scalable.

Apache Solr is written in Java and runs as a standalone full-text search server within a servlet

container such as Apache Tomcat. Solr uses the Lucene Java search library at its core for full-

text indexing and search, and has REST-like HTTP/XML and JSON APIs that make it easy

to use from virtually any programming language.

Solr’s powerful external configuration allows it to be tailored to almost any type of appli-

cation without Java coding, and it has an extensive plugin architecture when more advanced

customization is required. Further in this work you can find an example of such a plugin written

to provide extra functionality for Acquia.

When looking at a Lucene index, compared to a relational database, it seems that the index

is one database table and has very fast lookups and different specific filters for text search. It

takes time to create an index like this. Solr adds a front-end to the Lucene backend and many

other additions.

Fundamentally, Solr is very simple. One feeds it with information (documents) and afterwards

you query Solr and receive the documents that match the query. Solr allows applications to build

indexes based on different fields 4. These fields are defined in a schema which tells Solr how it

should build the index.

Analyzers Using analyzers and tokenizers a search query is processed. Field analyzers are

used both during ingestion, when a document is indexed, and at query time. An analyzer

examines the text of fields and generates a token stream. Analyzers may be a single class or

they may be composed of a series of tokenizer and filter classes.

Tokenizers Tokenizers break field data into lexical units, or tokens. Filters examine a stream

of tokens and keep them, transform or discard them, or create new ones. Tokenizers and filters

4Fields are different kinds of entries

3.3 Drupal 10

may be combined to form pipelines, or chains, where the output of one is input to the next.

Such a sequence of tokenizers and filters is called an analyzer and the resulting output of an

analyzer is used to match query results or build indices.

Although the analysis process is used for both indexing and querying, the same analysis

process need not be used for both operations. For indexing, you often want to simplify, or

normalize, words. For example, setting all letters to lowercase, eliminating punctuation and

accents, mapping words to their stems, and so on. Doing so can increase recall because, for

example, ”ram”, ”Ram” and ”RAM” would all match a query for ”ram”. To increase query-

time precision, a filter could be employed to narrow the matches by, for example, ignoring all-cap

acronyms if you’re interested in male sheep, but not Random Access Memory. The tokens output

by the analysis process define the values, or terms, of that field and are used either to build an

index of those terms when a new document is added, or to identify which documents contain

the terms your are querying for.

3.3 Drupal

History Drupal is originally written by Dries Buytaert as a message board. It became an

open source project in 2001. Drupal is a free and open-source content management system

(CMS) written in PHP and distributed under the GNU General Public License. It is used as

a back-end system for at least 1.5% of all websites worldwide ranging from personal blogs to

corporate, political, and government sites including whitehouse.gov and data.gov.uk. It is also

used for knowledge management and business collaboration.

The standard release of Drupal, known as Drupal core, contains basic features common to con-

tent management systems. These include user account registration and maintenance, menu man-

agement, RSS-feeds, page layout customization, system administration and even a basic search

functionality. The Drupal core installation can be used as a brochureware website, a single- or

multi-user blog, an Internet forum, or a community website providing for user-generated content.

Basic understanding A single web site could contain many types of content, such as infor-

mational pages, news items, polls, blog posts, real estate listings, etc. In Drupal, each item of

content is called a node (internally called an entity), and each node belongs to a single content

type (internally called entity type), which defines various default settings for nodes of that type,

3.3 Drupal 11

such as whether the node is published automatically and whether comments are permitted.

(Note that in versions below 7 of Drupal, content types were known as node types.)

Contributed Modules There are more than 12,000 free community-contributed add-ons,

known as contrib modules, available to alter and extend Drupal’s core capabilities and add new

features or customize Drupal’s behavior and appearance. Because of this plug-in extensibility

and modular design, Drupal is sometimes described as a content management framework. Dru-

pal is also described as a web application framework, as it meets the generally accepted feature

requirements for such frameworks. While Drupal core (7) comes with advanced search capabil-

ities it is still restricted by regular databases. 5. The module that was created during this work

is also defined as a contributed module.

Apache Solr Search Integration The Drupal module integrates Drupal with the Apache

Solr search platform. Faceted search is supported if the facet API module is used. Facets will

be available for you ranging from content author to taxonomy to arbitrary fields. The module

also includes functionalities such as :

• Search pages, e.g.: multiple search pages with optionally customized search results.

• Multiple environments to support multiple Solr servers.

• Comes with support for the node content type including dynamic fields.

• Can override the taxonomy pages and use output from Solr to generate taxonomy overview

pages.

• Can override the user content listing pages using output from Solr to generate these.

• Custom Content types (entities) indexing through hooks.

• Add biases and boosts to specific fields or content types

• Range Query type, that in combination with facet API and Facet Api Slider a very rich

faceting experience delivers to the end user.

• Supports a lot of customizations without having to modify the source code

5Any database that is compliant with the SQL standard should be able to run Drupal 7

EXPLORATION 12

Chapter 4

Exploration

This chapter describes the process of the index concepts in Apache Solr, explains how the

Apache Solr Search Integration module for Drupal works when indexing and points out some of

the improvements that should be made. It also takes a deeper look in the Facet Api 1module to

see how it is structured and where it could use improvements. And finally a brief analysis for

the upgrade from Apache Solr 1.4 to Apache Solr 3.5 in the context of Acquia Search service.

4.1 Apache Solr

Version conflicts Apache Solr consists out of a number of parts. The analysis part tries to

explain you all it entails. When Drupal 6 came out and became popular, there was only one

version of Apache Solr available. This was version 1.4 and was not yet merged with the Lucene

branch. Solr’s version number was synced with Lucene following the Lucene/Solr merge, so Solr

3.1 contains Lucene 3.1. Solr 3.1 is the first release after Solr 1.4.1. All the explanation that

follows will be for Solr 3.x since this is the version that is used and was aimed at during the

creation of this project.

Fields There are different field types defined in the original schema.xml that used to come

with the module. A field type has four types of information. Most of this information is gathered

from [Smiley(2011)] and [Smiley and Pugh(2009)].

• The name of the field type

• An implementation class name

1http://www.drupal.org/project/facetapi

http://www.drupal.org/project/facetapi

4.1 Apache Solr 13

• If the field type is TextField, a description of the field analysis for the field type

• Field attributes

To illustrate this there is listing 3 as an example of a field type definition as it is used in the

schema provided with the Apache Solr Module and also a list of all possible field types in listing

1.

Class Description

BCDIntField Binary-coded decimal (BCD) integer. BCD is a relatively ineffi-

cient encoding algorithm that offers the benefits of quick decimal

calculations and quick conversion to a string.

BCDLongField BCD long integer

BCDStrField BCD string

*BinaryField Binary data

*BoolField Contains either true or false. Values of ”1”, ”t”, or ”T” in the

first character are interpreted as true. Any other values in the

first character are interpreted as false.

ByteField Contains an array of bytes.

*DateField Represents a point in time with millisecond precision.

DoubleField Double (64-bit IEEE floating point)

ExternalFileField Pulls values from a file on disk.

FloatField Floating point (32-bit IEEE floating point)

IntField Integer (32-bit signed integer)

LongField Long integer (64-bit signed integer)

*RandomSortField Does not contain a value. Queries that sort on this field type will

return results in random order. Use a dynamic field to use this

feature.

ShortField Short integer

SortableDoubleField The Sortable* fields provide correct numeric sorting. If you use

the plain types (DoubleField, IntField, and so on) sorting will be

lexicographical instead of numeric.

SortableFloatField Numerically sorted floating point

SortableIntField Numerically sorted integer

4.1 Apache Solr 14

SortableLongField Numerically sorted long integer

*StrField String (UTF-8 encoded string or Unicode)

*TextField Text, usually multiple words or tokens

*TrieDateField Date field accessible for Lucene TrieRange processing

*TrieDoubleField Double field accessible Lucene TrieRange processing

TrieField If this type is used, a ”type” attribute must also be specified, with

a value of either: integer, long, float, double, date. Using this field

is the same as using any of the Trie*Fields.

*TrieFloatField Floating point field accessible Lucene TrieRange processing

*TrieIntField Int field accessible Lucene TrieRange processing

*TrieLongField Long field accessible Lucene TrieRange processing

*PointType For spatial search: An arbitrary n-dimensional point, useful for

searching sources such as blueprints or CAD drawings.

*LatLonType Latitude/Longitude as a 2 dimensional point. Latitude is always

specified first.

*GeoHashField Representing a Geohash2 field. The field is provided as a lat/lon

pair and is internally represented as a string.

UUIDField Universally Unique Identifier (UUID). Pass in a value of ”NEW”

and Solr will create a new UUID.

Listing 1: All field type definitions. Marked with a star are the ones that are used in the Apache

Solr Search Integration module for Drupal

Field properties Important to know is that each of these fields that is shown in listing 1 have

configurable values. Drupal uses these properties to map different dynamic fields to specific types

with specific configurations. These dynamic fields are what we call fields from the Field API

(Drupal 7) or from the Content Construction Kit (CCK, Drupal 6). With these modules it is

possible to add different fields to content types3

Field Property Description Values

2Geohash is a defined standard. More on wikipedia : http://en.wikipedia.org/wiki/Geohash
3Content types are a way of defining structured data that will be inputted by users

http://en.wikipedia.org/wiki/Geohash

4.1 Apache Solr 15

indexed If true, the value of the field can be used in queries

to retrieve matching documents

true or false

stored If true, the actual value of the field can be retrieved

by queries

true or false

sortMissingFirst / sort-

MissingLast

Control the placement of documents when a sort

field is not present. As of Solr 3.5, these work for

all numeric fields, including Trie and date fields.

true or false

multiValued If true, indicates that a single document might con-

tain multiple values for this field type

true or false

positionIncrementGap For multivalued fields, specifies a distance between

multiple values, which prevents spurious phrase

matches

integer

omitNorms If true, omits the norms associated with this field

(this disables length normalization and index-time

boosting for the field, and saves some memory).

Only full-text fields or fields that need an index-

time boost need norms.

true or false

omitTermFreqAndPositions If true, omits term frequency, positions, and pay-

loads from postings for this field. This can be a

performance boost for fields that don’t require that

information. It also reduces the storage space re-

quired for the index. Queries that rely on posi-

tion that are issued on a field with this option will

silently fail to find documents. This property de-

faults to true for all fields that are not text fields.

true or false

autoGeneratePhraseQueries For text fields. If true, Solr automatically generates

phrase queries for adjacent terms. If false, terms

must be enclosed in double-quotes to be treated as

phrases.

true or false

Listing 2: Field type properties and their respective explanation

4.1 Apache Solr 16

1 <!-- A text field that uses WordDelimiterFilter to enable splitting and matching of words

2 on case-change, alpha numeric boundaries, and non-alphanumeric chars,

3 so that a query of "wifi" or "wi fi" could match a document containing "Wi-Fi".

4 Synonyms and stopwords are customized by external files, and stemming is enabled.

5 Duplicate tokens at the same position (which may result from Stemmed Synonyms or

6 WordDelim parts) are removed. -->

7 <fieldType name="text" class="solr.TextField" positionIncrementGap="100">

8 <analyzer type="index">

9 <charFilter class="solr.MappingCharFilterFactory" mapping="mapping-ISOLatin1Accent.txt"/>

10 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

11 <!-- Case insensitive stop word removal.

12 add enablePositionIncrements=true in both the index and query

13 analyzers to leave a "gap" for more accurate phrase queries. -->

14 <filter class="solr.StopFilterFactory"

15 ignoreCase="true"

16 words="stopwords.txt"

17 enablePositionIncrements="true" />

18 <filter class="solr.WordDelimiterFilterFactory"

19 protected="protwords.txt"

20 generateWordParts="1"

21 generateNumberParts="1"

22 catenateWords="1"

23 catenateNumbers="1"

24 catenateAll="0"

25 splitOnCaseChange="1"

26 preserveOriginal="1" />

27 <filter class="solr.LengthFilterFactory" min="2" max="100" />

28 <filter class="solr.LowerCaseFilterFactory"/>

29 <filter class="solr.SnowballPorterFilterFactory" language="English" protected="protwords.txt"/>

30 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>

31 </analyzer>

32 <analyzer type="query">

33 <!-- Similar configuration, but then at query time, see real schema.xml for full example -->

34 </analyzer>

35 </fieldType>

Listing 3: Example of a text field type definition

Analyzers, Filters and Tokenizers used by Apache Solr Search Integration In the

snippet of the text field type definition there are some unexplained entries. Filters, tokenizers

and analyzers are used to process a value submitted by the application and to be saved properly

into Solr so we optimize the content for faster search. In chapter 3 these concepts were shortly

explained and what follows will be a list of analyzers, tokenizers and filters used in the Drupal

4.1 Apache Solr 17

module. Please note that these concepts can be used during query time and also at the index

time. A complete list of the supported classes can be found at http://wiki.apache.org/solr/

AnalyzersTokenizersTokenFilters.

WhitespaceTokenizerFactory Simple tokenizer that splits the text stream on whitespace

and returns sequences of non-whitespace characters as tokens. Note that any punctuation will

be included in the tokenization. Does not ship with any arguments.

1 <tokenizer class="solr.WhitespaceTokenizerFactory"/>

KeywordTokenizerFactory Treats the entire field as a single token, regardless of its con-

tent.

1 <tokenizer class="solr.KeywordTokenizerFactory"/>

MappingCharFilterFactory Maps Special characters to their plain equivalent

1 <charFilter class="solr.MappingCharFilterFactory" mapping="mapping-ISOLatin1Accent.txt"/>

Example (index time): Me alegro de que tú sonŕıas – It makes me happy that you smile.

LowerCaseFilterFactory Lowercases the letters in each token. Leaves non-letter tokens

alone.

1 <filter class="solr.LowerCaseFilterFactory"/>

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

4.1 Apache Solr 18

Example (index time): ”I.B.M.”, ”Solr” ==¿ ”i.b.m.”, ”solr”.

StopFilterFactory Discards common words that are listed in the stopwords.txt file. This

file is shipped in the module. Examples of these words are ”an, and, are, ...”. And as seen in

the example it ships with some configuration options such as ignoring the case of the text and

the file from where to read the stopwords from. This should be a path starting from the conf

folder. When enablePositionIncrements is true a token is stopped (discarded) and the position

of the following token is incremented. This is useful if you want to know if certain words were

discarded by looking at the token position.

1 <filter class="solr.StopFilterFactory"

2 ignoreCase="true"

3 words="stopwords.txt"

4 enablePositionIncrements="true"/>

1 # a couple of test stopwords to test that the words are really being

2 # configured from this file:

3 hola

4 si

5

6 # Standard english stop words taken from Lucene’s StopAnalyzer

7 a

8 an

9 and

10 ...

Listing 4: Example of the stopwords file

Example (index time): Si Hola estoy nick a on

4.1 Apache Solr 19

WordDelimiterFilterFactory Delimits words based on parts of words. Was originally de-

fined for the use in English based texts. It follows the following strict order but allows a number

of configurations to happen. The original filter has more options but below are only the ones

used in the Apache Solr schema.xml

• protected (optional) The pathname of a file that contains a list of protected words that

should be passed though without splitting. In the case of Drupal these are predefined as

some html entities.

• generateWordParts splits words at delimiters.

• generateNumberParts splits numeric strings at delimiters

• catenateWords maximal runs of word parts will be joined: ”hot-spot-sensor’s” -¿ ”hotspot-

sensor”

• catenateNumbers maximal runs of number parts will be joined: 1947-32” -¿ ”194732”

• catenateAll Set at 0, runs of word and number parts will not be joined: ”Zap-Master-9000”

-¿ ”Zap Master 9000”

• splitOnCaseChange words are not split on camel-case changes:”BugBlaster-XL” -¿ ”Bug-

Blaster”, ”XL”

• preserveOriginal the original token is preserved: ”Zap-Master-9000” -¿ ”Zap-Master-9000”,

”Zap”, ”Master”, ”9000”

1 <filter class="solr.WordDelimiterFilterFactory"

2 protected="protwords.txt"

3 generateWordParts="1"

4 generateNumberParts="1"

4.1 Apache Solr 20

5 catenateWords="1"

6 catenateNumbers="1"

7 catenateAll="0"

8 splitOnCaseChange="1"

9 preserveOriginal="1"/>

Example text (index time): Zap-Master-9000 9000-12 BugBlaster-XL hot-spot-sensor’s

LengthFilterFactory Words smaller than 2 chars and bigger than 100 will be discarded.

This is useful to speed up the query process because a blog posting from Large Scale Search

with Solr mentions that a query will exponentially grow in query time when small words are

used 4

1 <filter class="solr.LengthFilterFactory" min="2" max="100" />

Example Text (index time): I am a dog a b c 123 iamawordoveronehundredcharactersiamawor

doveronehundredcharactersiamawordoveronehundredcharactersiamawordoveronehundredchara

ctersiamawordoveronehundredcharactersiamawordoveronehundredcharacters

SynonymFilterFactory This is quite a special one that is only executed during query time.

Meaning that words will not be processed as synonyms in index time. If a user would type

color it could also check the index for texts with the word ”colour”. Same is valid for the more

concrete example ”GB,gib,gigabyte,gigabytes”

1 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt" ignoreCase="true" expand="true"/>

4http://www.hathitrust.org/blogs/large-scale-search

http://www.hathitrust.org/blogs/large-scale-search

4.1 Apache Solr 21

Example Text (query time): colour test

TrimFilterFactory This filter trims leading and/or trailing whitespace from tokens. In Dru-

pal usecase this is used for sortable text such as names or labels. The big difference with most

other filters is that this filter does not break words on spaces.

1 <filter class="solr.TrimFilterFactory" />

Example Text (query time): Nick Veenhof

EdgeNGramFilterFactory This filter generates edge n-gram tokens of sizes within the given

range. In the module it was configured to return 2-gram tokens till 25-gram tokens. Especially

useful for matching against queries with results. 5

1 <filter class="solr.EdgeNGramFilterFactory" minGramSize="2" maxGramSize="25" />

Example Text (index time) : I am a dog with a longbigtext

5http://www.lucidimagination.com/blog/2009/09/08/auto-suggest-from-popular-queries-using-edgengrams/

http://www.lucidimagination.com/blog/2009/09/08/auto-suggest-from-popular-queries-using-edgengrams/

4.1 Apache Solr 22

SnowballPorterFilterFactory Snowball is a software package that generates pattern-based

word stemmers. It works efficiently and fast and one can configure the language that is pre-

ferred. Apache Solr comes with a whole range of languages. English is very well supported but

also Catalan and Spanish. A list of all the languages can be found in the documentation of

Apache Solr or in the Snowball website 6. Also interesting to note is that there is a file called

protwords.txt (Protected words) where you can define strings that won’t be stemmed.

1 <filter class="solr.SnowballPorterFilterFactory" language="English" protected="protwords.txt"/>

Example Text (index time) : football footballing

RemoveDuplicatesTokenFilterFactory Removes duplicates from the query or the index

value.

1 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>

Example : Nick Nick Nick

Speed Speed is an important factor. During the research phase I found an interesting article

7 that showed a graph of the response time for their index. This graph shows that 97% of the

requests were completed in less than a second. The average was found to be 673 milliseconds.

6http://snowball.tartarus.org/
7http://www.hathitrust.org/blogs/large-scale-search/slow-queries-and-common-words-part-1

http://snowball.tartarus.org/
http://www.hathitrust.org/blogs/large-scale-search/slow-queries-and-common-words-part-1

4.1 Apache Solr 23

Those 3% of the queries are slower because there is a longer disk seek time. This means that

some queries contains commonly occurring words such as ”a”, ”of”, ”the”, ”and”, etc... Queries

with common words take longer because the data structures containing the lists of documents

containing those words in the index are larger. This same source mentions that the common-

grams filter 8 for Apache Solr could resolve these queries but further investigation is due. As a

conclusion it can be said that Apache Solr is a very fast add-on to Apache Lucene for full text

searching, spelling corrections, faceted search and much more.

Figure 4.1: Response Time for a Solr Index with over 1 Million records (Logarithmic Scale)

Dynamic Fields in Solr used by Drupal As explained, using a combination of field types

and field properties a schema can create lots of dynamic configurations for softwares that inter-

act with Solr. In the case of Drupal the Apache Solr Drupal module does not know in advance

how the schema should look like because all Drupal sites are differently configured using dif-

ferent content types. The module should be able to cope with most of the use cases that site

administrators come up with. If a field name is not found while submitting a new document, the

8http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.CommonGramsFilterFactory

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#solr.CommonGramsFilterFactory

4.1 Apache Solr 24

”dynamicFields” type will be used if the name matches any of the patterns. Note that there are

restrictions namely that the glob-like pattern in the name attribute must have a ”*” only at the

start of the end of the field definition. For example, name=” i” will match any field ending in i

(like myid i, z i). Longer patterns will be matched first and if equal size patterns both match,

the first appearing in the schema will be used.

Before starting this work not all of these dynamic fields were provided to the site adminis-

trators but with time a list was compiled to meet 99% of the use cases. See schema.xml in the

project files for the complete list. A small snippet of some of these dynamic fields is included

below. The 1st letter indicates the data type and the last letter is ’s’ for single valued, ’m’ for

multi-valued.

1 <fields>

2 <!-- We use long for integer since 64 bit ints are now common in PHP. -->

3 <dynamicField name="is_*" type="long" indexed="true" stored="true" multiValued="false"/>

4 <dynamicField name="im_*" type="long" indexed="true" stored="true" multiValued="true"/>

5 <!-- List of floats can be saved in a regular float field -->

6 <dynamicField name="fs_*" type="float" indexed="true" stored="true" multiValued="false"/>

7 <dynamicField name="fm_*" type="float" indexed="true" stored="true" multiValued="true"/>

8 <!-- List of doubles can be saved in a regular double field -->

9 <dynamicField name="ps_*" type="double" indexed="true" stored="true" multiValued="false"/>

10 <dynamicField name="pm_*" type="double" indexed="true" stored="true" multiValued="true"/>

11 <!-- List of booleans can be saved in a regular boolean field -->

12 <dynamicField name="bm_*" type="boolean" indexed="true" stored="true" multiValued="true"/>

13 <dynamicField name="bs_*" type="boolean" indexed="true" stored="true" multiValued="false"/>

14 <!-- Regular text (without processing) can be stored in a string field-->

15 <dynamicField name="ss_*" type="string" indexed="true" stored="true" multiValued="false"/>

16 <dynamicField name="sm_*" type="string" indexed="true" stored="true" multiValued="true"/>

17 <!-- Normal text fields are for full text - the relevance of a match depends on the length of the text -->

18 <dynamicField name="ts_*" type="text" indexed="true" stored="true" multiValued="false" termVectors="true"/>

19 <dynamicField name="tm_*" type="text" indexed="true" stored="true" multiValued="true" termVectors="true"/>

20

21 ...

22

23 <!-- The following causes solr to ignore any fields that don’t already match an existing

24 field name or dynamic field, rather than reporting them as an error.

25 Alternately, change the type="ignored" to some other type e.g. "text" if you want

26 unknown fields indexed and/or stored by default -->

27 <dynamicField name="*" type="ignored" multiValued="true" />

28

29 </fields>

Listing 5: Example of some dynamic field type definitions

4.2 Standard Drupal Search 25

In the implementation chapter it will be explained how these dynamic fields are used to create

new fields in Solr using Drupal.

4.2 Standard Drupal Search

By default Drupal already ships with a search module that leverages Mysql to its far extent in

order to create a search experience that works quite well in smaller scale websites.

In Drupal there is a concept called ”cron”. These are actions that are executed per set

amount of time, for example 30 minutes. Every 30 minutes the designated search actions will

index a little set of the selected content, for example 100 pages. This will run until there is

no more content to index. Naturally content will change and will need to be re-indexed. This

concept is fairly basic and is also the one used for the Apache Solr module. However, I’d like to

point out that the Search module that is shipped with Drupal differs greatly from the Apache

Solr module.

Advantages The standard Drupal search module certainly has its advantages. There is, to

start with, no extra server/service necessary and it does ship with Drupal core. The basic mod-

ule also has support for basic text transformations, such as recognition of singular and plural

words. It transforms special characters to basic text characters (Similar to the MappingCharFil-

terFactory in Apache Solr) and it scores items based on their tag where they are embedded in.

Examples are H1, H2 and P tags.

Disadvantages However, it has a hard time handling a big data set. MySQL was not built

to be a search engine. Mysql also has its limitations when building a full text search on top of

its stack. Drupal also has to comply with the SQL standards so engine specific optimizations

cannot be utilized. 9. This leaves the SQL solution with a very restricted set of operators and

inherently slow and not scalable in the long haul.

Conclusion Drupal SQL search An SQL backend does well in serving a full text search

application as long as the number of indexed items stay stable and preferably ¡ 10000 items. 10

9http://dev.mysql.com/doc/refman/4.1/en/fulltext-restrictions.html
10This number is an estimation, depending on the SQL database application and server configuration this can

vary greatly

http://dev.mysql.com/doc/refman/4.1/en/fulltext-restrictions.html

4.3 Apache Solr Search Integration Drupal Module 26

4.3 Apache Solr Search Integration Drupal Module

The module found its origin around the end of 2007, at the time of Drupal 5. Its first author was

Robert Douglass and lots of other people followed his lead in this initiative. Fast forward and

at the moment of writing a Drupal 6 and 7 version exist. When this work started the Drupal 7

version was basically a port of the Drupal 6 version and needed lots of improvements. Acquia

sponsors development of this module to ensure continuity and support.

Filtering Search facets, also known as filters allow users to refine or sort their search result

set. Users can begin with a general search and narrow down the result set as they understand

better what content is available on a site.

Figure 4.2: Filter by Type

example. A user clicked on

Discussion

When a user clicks on any term within a filter block it sends

a new query to the Apache Solr server and it returns a resultset

with the narrowed down results so it only includes content that

matches the original query (text search) and the newly selected

filter. The practice of this narrow-down method is that the user

can keep selecting new filters until he finds what he is looking

for. The facets can be configured as OR or AND. When the user

clicks the minus ”(-)” the filter will be removed from the current

set and show the results of the search minus that specific filter.

Configuration When the site creator wants to add more facets

it is possible by going to a configuration page. As shown in the

picture above. The site creator selects the facets he wants and

then configures them in more detail in the block settings. The

block configuration page allows you to configure, for example,

the number of filters the block displays, how many it displays

after clicking the show more link, the title of the block and many

more. Some important facets to mention are Author, Content Type, Language, Vocabulary and

Dynamic CCK/Field API filters

4.3 Apache Solr Search Integration Drupal Module 27

Figure 4.3: Configure the facets

Content Recommendation Apache

Solr can also show content sugges-

tions to user that is viewing a spe-

cific piece of content. These sugges-

tions are made based on the con-

tent of the viewed text. It can be

used for suggestions similar to ”cus-

tomers who bought X also liked Y”,

or simply a list of relevant blog en-

tries. The importance of certain pa-

rameters can be adjusted in the bias settings.

Figure 4.4: Content Recommendations can be seen in the block ”Related Posts”

Figure 4.5: Spelling correction

Spelling Suggestions One of the other fea-

tures of Apache Solr, and a feature that con-

quered a lot of hearts in the community was

the spellchecker. Similarly to what Google

does when you misspell a word it will search

in the index for a word similar to your word,

but with better/more relevant results.

4.3 Apache Solr Search Integration Drupal Module 28

State of the UI as of September 2011

What is shown below is a snapshot of how the

module looked in the backend as of September

2011. There are markers that indicate prob-

lem areas. Do take into account that this does not show you any comments made on the code

and any internals of the module.

Figure 4.6: UI settings backend, September 2011

Summary for the UI settings backend

• The tab names are hard to understand. Search bias and/or Search fields are not compre-

hensible for a first time user.

• The first like is a link to add a content recommendation block. Surely there must be more

important items to appear at the top.

4.3 Apache Solr Search Integration Drupal Module 29

• In the settings tab there are global search page settings and ideally those must be gener-

alized so that each search page can use another preset.

• The use of the ”Show search box” appears everywhere and is therefore obsolete.

Figure 4.7: UI index report backend, September 2011

Summary for the UI report backend

• There is information spread out across the whole page. This should be structured and

weight should be given to the more important parts.

• There are 3 types of actions but reading all of them makes you doubt even more about

what they do. That should be clarified.

4.3 Apache Solr Search Integration Drupal Module 30

Figure 4.8: UI search pages backend, September 2011

Summary for the UI search pages backend

• When going to the search pages the first time, the user sees that the list is empty. However,

when going to the search in Drupal a new search tab was added. This raises confusion and

therefore the core search page (overridden by Apache Solr) should appear in the search

pages listing.

Figure 4.9: UI for result and index biasing backend, September 2011

4.3 Apache Solr Search Integration Drupal Module 31

Summary for the UI index biasing backend

• Multiple forms are visible in 1 page. According to the UI standards of Drupal this is a

no-go.

• It also appears there is a settings available, a setting that excludes content types from the

index, that should be moved to the index settings.

Architectural challenges Drupal and the module were never intended to be built by archi-

tects but by people who solve problems, real world problems. Many people worked together to

create a cohesive project that is very stable but might not be in agreement with what is taught

in classes such as Object Oriented programming, other theories and best practices. A class

diagram would be a faulty way to show you the beauty this module has to offer its users since

there were hardly object oriented concepts applied to this module that were worthy enough to

generate a class-diagram from. Together with Acquia we’ve set up a list of minimal achievements

that should be reached by the end of February. Some of these items are also issues that were

pointed out by other companies or users and they were being put into the issue queue waiting

for an answer or a resolution.

Improvements

• UI refactoring to make a better experience 11

• Support the indexing of multiple entities natively so the module would have an API to

index users / terms / ... easily 12

• Global functions should be context driven.13

• Get rid of dependencies in theme layer from core search 14

• (Performance) Hooks node type, taxonomy and user knocks out our database server 15

• Improve file listing and access control

• ”More like this” blocks should get a delete button 16

• De-duplicate core and custom search in order to obtain clarity in the code 17

11http://drupal.org/node/1292364
12http://drupal.org/node/1292364
13http://drupal.org/node/1292364
14Related to http://drupal.org/node/1314406 (de-duplication)
15http://drupal.org/node/592522
16http://drupal.org/node/1271964
17http://drupal.org/node/1314406

http://drupal.org/node/1292364
http://drupal.org/node/1292364
http://drupal.org/node/1292364
http://drupal.org/node/1314406
http://drupal.org/node/592522
http://drupal.org/node/1271964
http://drupal.org/node/1314406

4.4 Facetapi Drupal module 32

• Add 1 custom search block with generic render function for custom development

• The numeric field id should not be used for Solr index field names 18

• Query type should be adjusted in order to allow different widgets in facetapi 19

• Change the PHP static to the Drupal function drupal static() 20

• Non-current/valid Node Types are not excluded from index 21

• Add retain current filters checkbox to custom search page 22

• Add ”retain-filters” param when in facet browsing mode 23

• Handle one placeholder in a custom search page path which makes the taxonomy sub-

module obsolete 24

• Create tests for the module 25

• Bundle’ is not a required field, but the module treats it as such (Evaluate required fields

in schema, make non-required if possible) 26

• Improve Date faceting/date query type (combined with facetapi) 27

• Facets are currently not linked to the appropriate search page

• Add clone operation for search environments 28

• Backport Apache Solr Module to Drupal 6

4.4 Facetapi Drupal module

The Facet API module allows site builders to easily create and manage faceted search interfaces.

In addition to the UI components that come out of the box, themers and module developers can

build their own widgets that can optionally be contributed back to Drupal.org. Facet API works

with the core Search, Search API, and Apache Solr Search Integration modules (including Acquia

Search) meaning that code and configuration can be reused as-is with the most popular search

solutions available to Drupal. It was created by Chris Pliakas and Peter Wolanin specifically for

18http://drupal.org/node/1161538
19http://drupal.org/node/1161444
20http://drupal.org/node/1334216
21http://drupal.org/node/1000532
22http://drupal.org/node/1246422
23http://drupal.org/node/1116792
24http://drupal.org/node/1294846
25http://drupal.org/node/989398
26http://drupal.org/node/1279164
27http://drupal.org/node/1201534
28http://drupal.org/node/1292328

http://drupal.org/node/1161538
http://drupal.org/node/1161444
http://drupal.org/node/1334216
http://drupal.org/node/1000532
http://drupal.org/node/1246422
http://drupal.org/node/1116792
http://drupal.org/node/1294846
http://drupal.org/node/989398
http://drupal.org/node/1279164
http://drupal.org/node/1201534
http://drupal.org/node/1292328

4.4 Facetapi Drupal module 33

the Drupal 7 version of any search tool. Acquia sponsors development of this module to ensure

continuity and support.

State of the UI as of September 2011 What is shown below is a snapshot of how the

module looked in the backend and frontend as of September 2011. The markers indicate problem

areas. Do take into account that this does not show you any comments made on the programming

code and the internals of the module.

Screenshots of the implemented part of facetapi (Drupal 7)

Figure 4.10: Apache Solr Facetapi Integration UI as of September 2011

Summary for the UI search pages backend

• There was no possibility to easily switch to facets from other environments because one

4.4 Facetapi Drupal module 34

had to make the other environment the default one. This was a huge workaround and had

to be fixed.

Figure 4.11: Apache Solr Facetapi Integration UI of 1 facet as of September 2011

• The Facet details page was ok in its use and therefore it did not need any further adjust-

ments.

Architecture As part of the analysis a class diagram was made from the Facet Api code to

get a better understanding of the internals. An issue 29was raised in the Facet Api issue queue

on drupal.org for those who prefer to read up in detail.

29http://drupal.org/node/1321136

drupal.org
http://drupal.org/node/1321136

4.4 Facetapi Drupal module 35

Figure 4.12: Extended information about the classes in FacetAPI, September 2011

4.4 Facetapi Drupal module 36

Figure 4.13: Class Diagram of FacetAPI, September 2011

• There are a number of loop-references between the adapter and its relations. This can

possibly be avoided by thinking the architecture through (see the references that have two

lines to each other)

• The variable facet in FacetapiFacet might be a bit too un-descriptive and it looks like it

could be renamed to ”settings” or ”facet settings”

• Doxygen documentation with loads of diagrams and easy to read documentation was

generated from this. In addition to the attached images it should make the facetapi

module easier to understand. The documentation can be found on http://facetapi.

nickveenhof.be

Improvements

• Modify ”query type” key in facet definition to accept an array 30

• Make the current search block more configurable 31

• Complete configuration import functionality 32

30http://drupal.org/node/1161434
31http://drupal.org/node/593658
32http://drupal.org/node/1147564

http://facetapi.nickveenhof.be
http://facetapi.nickveenhof.be
http://drupal.org/node/1161434
http://drupal.org/node/593658
http://drupal.org/node/1147564

4.5 Acquia Search for Drupal 6 and 7 37

• widget.inc change id/class to not reflect the field id but a generic one for multisite (line

106) + apachesolr.module line 1860 to remove the id (integer) assumptions

• Backport Facet Api to Drupal 6

4.5 Acquia Search for Drupal 6 and 7

Quote from Dries’ blog : ”Acquia Search is a hosted search service based on the Software as a

Service (SaaS) model. The way it works is that Drupal sites push their content to the search

servers hosted by Acquia. We index the content, builds an index, and handle search queries.

We provide the search results, facets, and content recommendations to your Drupal site over

the network.” 33

As the reader of this paper would have guessed, Acquia Search is built using the Open

Source Lucene and Solr distributions from the Apache project. Another quote from Dries’

website : ”Many organizations simply lack the Java expertise to deploy, manage and scale Java

applications or their hosting environment may not accommodate it. Because Acquia Search is

a hosted service, it takes away the burden of installation, configuration, and operational duties

to keep the software fast, secure and up-to-date.”

Figure 4.14: Overview of the classes and services used for Acquia Search at the website’s end.

33http://buytaert.net/acquia-search-benefits-for-site-administrators

http://buytaert.net/acquia-search-benefits-for-site-administrators

4.5 Acquia Search for Drupal 6 and 7 38

Architecture Even though the image was not built as a real class diagram it should be clear

that there are two classes in the Apache Solr module that are pictured here (yellow). The

only important one to cover here is the DrupalApacheSolrService. This class makes it possible

to connect to an arbitrary Solr server. When the Acquia Search module is enabled on any

website the AcquiaSearchService class extends the DrupalApacheSolrService class and adds the

authentication information to all the requests.

The next figure will explain the server side handling of the requests that are being sent to

Solr.

Figure 4.15: Server Side view of Acquia Search. Certain information has been blurred for

confidentiality

HMAC authentication filter The way it works is that the data is protected during the

transport over the web by SSL and to authenticate to the search servers at Acquia an SHA1-

HMAC authentication layer is used. This means that the data is encrypted so no man in the

middle attack can be exploited. Acquia knows that you have sent the request and will verify,

4.5 Acquia Search for Drupal 6 and 7 39

using this SHA1-HMAC authentication, if the data that was sent was not modified.

This kind of authentication is commonly called a symmetric signature. Using a shared secret

the message is signed and also verified as can be seen in the image below.

Figure 4.16: Signing a message using a symmetric signature

As illustrated in the figure above, signing a message using a symmetric signature involves

the following steps:

• The sender creates a HMAC using a shared secret key and attaches it to the message.

• The sender sends the message and HMAC to the recipient.

• The recipient verifies that the HMAC that was sent with the message by using the same

shared secret key that was used to create the HMAC.

By signing with a shared secret, both data integrity and data origin authenticity are provided

for the signed message content. The only downside is that the receiver does not know who exactly

wrote the message. He can only verify if it was encrypted with the right shared key. Acquia

Search creates a hash from the network identifier (aka the subscription ID from the customer)

and generates a secret shared key from this information. Using this derived key and a blob of

data it can be easily encoded so the backend is able to verify the authenticity of the message

1 <?php

2 /**

3 * Derive a key for the solr hmac using the information shared with acquia.com.

4 */

5 function _acquia_search_derived_key() {

6 $key = ACQUIA_KEY;

7 $subscription = SUBSCRIPTION_INFO_ARRAY;

8 $identifier = ACQUIA_IDENTIFIER;

4.5 Acquia Search for Drupal 6 and 7 40

9 // We use a salt from acquia.com in key derivation since this is a shared

10 // value that we could change on the AN side if needed to force any

11 // or all clients to use a new derived key. We also use a string

12 // (’solr’) specific to the service, since we want each service using a

13 // derived key to have a separate one.

14 $salt = $subscription[’derived_key_salt’];

15 $derivation_string = $identifier . ’solr’ . $salt;

16 $derived_key = _acquia_search_hmac($key, str_pad($derivation_string, 80, $derivation_string));

17 return $derived_key;

18 }

19

20 /**

21 * Calculates a HMAC-SHA1 of a data string.

22 *

23 * See RFC2104 (http://www.ietf.org/rfc/rfc2104.txt). Note, the result of this

24 * must be identical to using hash_hmac(’sha1’, £string, £key); We don’t use

25 * that function since PHP can be missing it if it was compiled with the

26 * --disable-hash switch. However, the hash extension is enabled by default

27 * as of PHP 5.1.2, so we should consider requiring it and using the built-in

28 * function since it is a little faster (~1.5x).

29 */

30 function _acquia_search_hmac($key, $string) {

31 $output = str_pad($key, 64, chr(0x00)) ^ (str_repeat(chr(0x5c), 64));

32 $output .= pack("H*", sha1((str_pad($key, 64, chr(0x00)) ^ (str_repeat(chr(0x36), 64))) . $string));

33 return sha1($output);

34 }

Listing 6: Small excerpt to show how the Client side generates the HMAC message to send back

to the Solr Service

State of Acquia Search When the internship started at Acquia there were some blanks left

to be filled regarding Acquia Search. Since Solr 3.4 (now 3.5) came out it was only a logical step

to convert the Acquia Search service to this newer version of Apache Solr so it could be used in

the software as a service ideology that Acquia has. The version that is currently used is Apache

Solr 1.4 and is still one of the de facto standards when deploying Solr.

As always, upgrading does not usually happen overnight without any effort. There are many

clients running their active sites from Solr 1.4 and it is not guaranteed that all of these will work

perfectly for Solr 3.5. Performance factors are also a key role during this migration.

As reviewed by the architecture it also needs a confirmed upgrade path for the HMAC

authentication, which was written specifically for Solr 1.4 as a Java Servlet.

4.5 Acquia Search for Drupal 6 and 7 41

Improvements

• Upgrade the Java Servlet that was written to handle HMAC authentication Solr request

to Solr 3.x

• Test if the Solr 3.x performs better or equally well using the upgraded code and by using

existing indexes and a real infrastructure server setup to emulate a real-life situation.

IMPLEMENTATION 42

Chapter 5

Implementation

5.1 Communication

Every thing has a start and an end I started my internship on September 22nd in Boston.

While being on-site, I learned how Acquia manages processes and works together with the

community in order to reach business goals. Also watching them work with a lot of remote

employees was a truly valuable lesson. More about this experience can be read in the article

I wrote about this. Since my involvement with the Apache Solr project, there are about 3000

websites that have the Drupal 7 version of the module installed and about 11000 websites actively

reporting that they have the module installed (Drupal 6 and Drupal 7). I’ve committed more

than 220 patches to the Apache Solr project and all of them were made and created publicly and

I’ve had help from a whole community when reviewing those on the fly. I will continue working

on the module and I will continue motivating people to help out and make the project better as

a whole.

Exposing the work to the public I have recently given a presentation on ‘Drupal Search’

explaining to more than 60 attendees what was done with the module and where it was heading

to in Belgium. Lots of open communication has happened within the community in the Apache

Solr Issue Queue. In total I have given 5 presentations with a combined total of more than 400

attendants.

5.1 Communication 43

5.1.1 Daily communication

When the thesis/internship started I was a bit unclear how it would work. Working from your

home every day, and having a time difference of 6 hours proved to be quite challenging.

At Acquia they use an internal chat-server but also promote alternative ways of communi-

cation. During this period I’ve used Skype, Adobe Connect, Google Hangout, VOIP using my

phone’s 3G. Joining conference room calls while 50% of the people were attending the meeting

physically and others remotely was also a daily event to look out for.

From October until the end of December I mainly communicated with Peter Wolanin to keep

track of the daily work and to clear out any questions or issues that could block my progress.

The methodology was similar to a scrum session but more personal. This sheet was divided in

4 main segments.

• What did I get done since last meeting?

• What will I get done before the next meeting?

• What is slowing me down or blocking progress?

• What did you discover that would be of interest, or needs to be discussed post scrum?

Below one can see how this looked like. The full document is available upon request.

Figure 5.1: Mini Daily Scrum worksheet

From the 1st of January I also joined the team of Michael Cooper, who leads the network

5.1 Communication 44

project in Acquia1. He holds a daily standup where we do a similar exercise but, instead of

writing, the team members tell (preferable while standing up) what they have done, what they

plan to do and what is blocking them. The network team uses a full scrum methodology. 2

5.1.2 Drupal Camps and seminars

Exposing the work that was done in a community such as Drupal is very important to get valida-

tion and also constructive comments to be able to built further. Those meetings (Drupalcamps,

DrupalDays, anything similar) are important to meet people that are in the same technologic

space. People with experience and knowledge, but also people with an opinion that makes one

think, and think hard! Also it is important to expose knowledge to people who are new to

Drupal, it makes their lives easier and, if all goes well, the community can count on one more

skilled person to help out in need.

After the redesign of the Apache Solr UI and a bunch of other changes under the hood there

were a couple of events where I was invited as a guest speaker and where I was able to explain

what I did, why I was doing this and how they could help making all of this more successful.

Drupal User Group Belgium The 9th of November 2011 I gave a presentation in Ghent, Bel-

gium about Search in Drupal 7. More than 60 attendees showed up and most of them were happy

to learn about the details of Search and more about Apache Solr. Details can be found on http:

//drupal.be/evenement/dug-drupal-user-group-meeting-over-search-in-drupal-7

Drupal Camp Toulouse From the 26th of November until the 27th of November 2011 I’ve

attended a Drupalcamp in Toulouse http://toulouse2011.drupalcamp.fr/en. The topic of

the presentation was similar but more focussed on questions and answers. The French audience

was a bit smaller (around 30) compared to the Drupal User Group in Belgium but the talks I

had afterwards with members of the community were great.

Acquia Internal Training On the 2nd of December 2011 I presented the same presen-

tation as the one I did in Toulouse but then for the employees of Acquia, using an online

platform. In the company this is a called a ”lunch and learn” so a bunch of people gather

1The network project is responsible for all the websites and internal processes that connect with the Acquia

Services.
2More about scrum can be found here. This section does not elaborate further because since scrum itself could

be a whole other thesis.http://en.wikipedia.org/wiki/Scrum_(development)

http://drupal.be/evenement/dug-drupal-user-group-meeting-over-search-in-drupal-7
http://drupal.be/evenement/dug-drupal-user-group-meeting-over-search-in-drupal-7
http://toulouse2011.drupalcamp.fr/en
http://en.wikipedia.org/wiki/Scrum_(development)

5.1 Communication 45

during lunchtime and follow a presentation about a certain topic. Personally this was the

most stressful presentation because there was less interaction and I could not see the au-

dience. On the other hand, the audience could not see me neither. The only thing visi-

ble was my computer screen and the presentation. Around 15 people attended this presen-

tation. The presentation from Toulouse and the Internal Training can be found on http:

//prezi.com/j-wss0nznowb/acquia-lunch-and-learn-december-2011-drupal-search/

Drupal Science Camp A totally different experience was the Drupal Science Camp in Cam-

bridge. This Camp was organized in 21st and the 22nd of January 2012 in a business complex

and was crowded. Everything was organized really quickly but that did not affect the quality of

the conference. I gave a final overview of what I had done in those months and what could/should

still happen when my time was over. More information about the session can be found on http:

//www.drupalsciencecamp.org.uk/sessions/drupal-search-and-solr-wizardry. Over 40

people were packed in a room to listen to the presentation and approached me with challenging

questions.

5.1.3 Blog Posts

To continue on the dissemination of the results and get an even broader audience a series of

blog posts were written. They have generated, when accumulated, over 20.000 page views and

a series of comments and reactions.

• Using Github application in your patch workflow 3

• Attending the Boston Drupal User Group 4

• Changing a git commit message in the commit history 5

• A story of an intern at Acquia 6

• Adding a custom plugin to Solr 7

• A simple guide to install Apache Solr 3.x for Drupal 7 8

3http://nickveenhof.be/blog/using-github-application-patch-workflow-0
4http://nickveenhof.be/blog/boston-drupal-user-group
5http://nickveenhof.be/blog/changing-git-commit-message-commit-history
6http://nickveenhof.be/blog/story-intern-acquia
7http://nickveenhof.be/blog/adding-custom-plugin-solr
8http://nickveenhof.be/blog/simple-guide-install-apache-solr-3x-drupal-7

http://prezi.com/j-wss0nznowb/acquia-lunch-and-learn-december-2011-drupal-search/
http://prezi.com/j-wss0nznowb/acquia-lunch-and-learn-december-2011-drupal-search/
http://www.drupalsciencecamp.org.uk/sessions/drupal-search-and-solr-wizardry
http://www.drupalsciencecamp.org.uk/sessions/drupal-search-and-solr-wizardry
http://nickveenhof.be/blog/using-github-application-patch-workflow-0
http://nickveenhof.be/blog/boston-drupal-user-group
http://nickveenhof.be/blog/changing-git-commit-message-commit-history
http://nickveenhof.be/blog/story-intern-acquia
http://nickveenhof.be/blog/adding-custom-plugin-solr
http://nickveenhof.be/blog/simple-guide-install-apache-solr-3x-drupal-7

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 46

• Slides of the Drupal Search and Solr sessions 9

• Upgrading from Apache Solr 1.4 to Apache Solr 3.5 and its implications 10

Conferences + Blogging Result An estimated crowd of 150 people have seen the presen-

tation and the work in front of me and a whole lot more have seen the blog posts. All this from

start to end, early and at a later stage. By presenting a work often, and exposing what one does

quickly, one enhances the changes on a better product in the end. All the constructive comments

were written down and reported back to the daily scrum and were merged in to the roadmap.

This feedback also gave an invaluable pointer to the importance of certain items, such as the

multi entity support, in the roadmap. When working remotely one doesn’t physically meet the

community members but these social events and camps surely compensate for the missing piece

in the puzzle.

5.2 Apache Solr module for Drupal 7 version 7.x-1.0

The module got a major overhaul in these months. Over 219 commits from the author were

made to the codebase of the Apache Solr project.

5.2.1 Search Environments

UI Improvements As seen in chapter 4 it became clear that the old UI did not suffice for

managing multiple environments. Also there was no way to remove environments and/or clone

them. During the process the search environment got its own tab (under settings) and it is also

directly visible if a search environment is online or not (green color). The advanced configuration

got overhauled as well and now includes options such as the amount of items to index per cron

and also a select box of what to do when the module fails to connect/fails to execute a query. The

benefit of having multiple environments is obvious: retrieving data from two indexes or having

indexes for the development/staging and production environment. Another addition that was

made is that the search bias and boost information is now environment dependent instead of

being applied to all queries.

9http://nickveenhof.be/blog/drupal-search-and-solr-dug-november-2011
10http://nickveenhof.be/blog/upgrading-apache-solr-14-35-and-its-implications

http://nickveenhof.be/blog/drupal-search-and-solr-dug-november-2011
http://nickveenhof.be/blog/upgrading-apache-solr-14-35-and-its-implications

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 47

Figure 5.2: Search Environments

Functions Originally, the module did not have support for multiple search environments. Just

moments before this thesis was executed some small support for multiple search environments

was added. Most of the functions did not take a search environment argument and were depen-

dent on the default search environment. During these months of dedication to the Apache Solr

Module we improved the support for multiple search environments.

Listing 7 is a list of functions signatures with their parameters. All of them were adjusted

to support multiple environments since none of these functions were already supporting this

functionality. Changing all of them was a tedious work that involved a lot of testing, feedback

and more testing. Which brings you, my dear reader to the next paragraph!

1 <?php

2 /**

3 * Batch Operation Callback

4 */

5 function apachesolr_index_batch_index_entities($env_id, &$context) {

6

7 /**

8 * Send up to £limit entities of each type into the index.

9 */

10 function apachesolr_index_entities($env_id, $limit) {

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 48

11

12 /**

13 * Returns an array of rows from a query based on an indexing environment.

14 * @todo Remove the read only because it is not environment specific

15 */

16 function apachesolr_index_get_entities_to_index($env_id, $entity_type, $limit) {

17

18 /**

19 * Delete an entity from the indexer.

20 */

21 function apachesolr_index_delete_entity_from_index($env_id, $entity_type, $entity) {

22

23 /**

24 *

25 * @param type £type

26 * @return type

27 * @todo Add Type support

28 */

29 function apachesolr_index_mark_for_reindex($env_id, $entity_type = NULL) {

30

31 /**

32 * Sets what bundles on the specified entity type should be indexed.

33 *

34 * @param string £env_id

35 * The Solr core for which to index entities.

36 * @param string £entity_type

37 * The entity type to index.

38 * @param array £bundles

39 * The machine names of the bundles to index.

40 */

41 function apachesolr_index_set_bundles($env_id, $entity_type, array $bundles) {

42

43 /**

44 * Returns last changed and last ID for an environment and entity type.

45 */

46 function apachesolr_get_last_index_position($env_id, $entity_type) {

47

48 /**

49 * Sets last changed and last ID for an environment and entity type.

50 */

51 function apachesolr_set_last_index_position($env_id, $entity_type, $last_changed, $last_entity_id) {

52

53 /**

54 * Set the timestamp of the last index update

55 * @param £timestamp

56 * A timestamp or zero. If zero, the variable is deleted.

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 49

57 */

58 function apachesolr_set_last_index_updated($env_id, $timestamp = 0) {

59

60 /**

61 * Semaphore that indicates whether a search has been done. Blocks use this

62 * later to decide whether they should load or not.

63 *

64 * @param £searched

65 * A boolean indicating whether a search has been executed.

66 *

67 * @return

68 * TRUE if a search has been executed.

69 * FALSE otherwise.

70 */

71 function apachesolr_has_searched($env_id, $searched = NULL) {

72

73 /**

74 * Semaphore that indicates whether Blocks should be suppressed regardless

75 * of whether a search has run.

76 *

77 * @param £suppress

78 * A boolean indicating whether to suppress.

79 *

80 * @return

81 * TRUE if a search has been executed.

82 * FALSE otherwise.

83 */

84 function apachesolr_suppress_blocks($env_id, $suppress = NULL) {

85

86 /**

87 * Get a named variable, or return the default.

88 *

89 * @see variable_get()

90 */

91 function apachesolr_environment_variable_get($env_id, $name, $default = NULL) {

92

93 /**

94 * Set a named variable, or return the default.

95 *

96 * @see variable_set()

97 */

98 function apachesolr_environment_variable_set($env_id, $name, $value) {

99

100 /**

101 * Get a named variable, or return the default.

102 *

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 50

103 * @see variable_del()

104 */

105 function apachesolr_environment_variable_del($env_id, $name) {

106

107 /**

108 * Static getter/setter for the current query. Only set once per page.

109 */

110 function apachesolr_current_query($env_id, DrupalSolrQueryInterface $query = NULL) {

111

112 /**

113 * Gets a list of the bundles on the specified entity type that should be indexed.

114 *

115 * @param string £core

116 * The Solr environment for which to index entities.

117 * @param string £entity_type

118 * The entity type to index.

119 * @return array

120 * The bundles that should be indexed.

121 */

122 function apachesolr_get_index_bundles($env_id, $entity_type) {

Listing 7: List of functions that were modified to support multiple environments

Testing Drupal uses a specific framework for testing, called Simpletest 11. This testing frame-

work is nested very deeply into the Drupal 7 development process.

The Functional tests are the most common. They create a fresh database installation and

specifically create data for the test in the database and then make assertions based on expected

results. Unit tests work without a database installation in the backend and are useful for isolated

functions that don’t make assumptions about the larger system. Upgrade tests use a database

dump from an earlier version of Drupal and import that to run update.php and then check

assertions.

For the search environments tests were written as functional tests. As explained above, these

test try to assess the functionality from an UI point of view.

1 <?php

2 /**

3 * Asserts that we can edit a search environment

4 */

5 function testEditSearchEnvironment() {

6 $this->drupalLogin($this->admin_user);

7 $this->drupalGet(’admin/config/search/apachesolr/settings’);

11Simpletest info can be found on http://drupal.org/simpletest

http://drupal.org/simpletest

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 51

8 $this->clickLink(t(’Edit’));

9 $this->assertText(t(’Example: http://localhost:8983/solr’), t(’Edit page was succesfully loaded’));

10 $edit = array(’name’ => ’new description foo bar’, ’url’ => ’http://localhost:8983/solr/core_does_not_exists’);

11 $this->drupalPost($this->getUrl(), $edit, t(’Save’));

12 $this->assertResponse(200);

13 drupal_static_reset(’apachesolr_load_all_environments’);

14 drupal_static_reset(’apachesolr_get_solr’);

15 $this->drupalGet(’admin/config/search/apachesolr/settings’);

16 $this->assertText(t(’new description foo bar’), t(’Search environment description was succesfully edited’));

17 $this->assertText(’http://localhost:8983/solr/core_does_not_exists’, t(’Search environment url was succesfully edited’));

18 }

Listing 8: Example of a search environment test

1 <?php

2

3 /**

4 * Asserts that the module was installed and that a notice appears that the server is offline

5 */

6 function testServerOffline() {

7

8 /**

9 * Asserts that the module was installed and that a notice appears that the server is offline

10 */

11 function testIndexFileIncluded() {

12

13 /**

14 * Asserts that we can edit a search environment

15 */

16 function testEditSearchEnvironment() {

17

18 /**

19 * Asserts that we can use various url forms for the search environment

20 */

21 function testEditSearchEnvironmentURLs() {

22

23 /**

24 * Asserts that we can edit a search environment

25 */

26 function testCloneSearchEnvironment() {

27

28 /**

29 * Asserts that we can edit a search environment

30 */

31 function testCreateNewSearchEnvironment() {

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 52

Listing 9: All the test signatures concerning the search environments

Figure 5.3: In total 227 tests assessments were written in 6 functional tests for the search

environments, all of them pass.

Exportable The environments are also exportable to code so that it becomes easier for de-

ployment 12 to another server-environment. Ctools13 is utilized to help enabling the export of

this configuration.

5.2.2 Search pages

Figure 5.4: Search pages overview page

UI Improvements Also the Search Pages

obtained a massive change UI wise. All the

functionality is now merged in to one solid

landing page for search pages. The core search

page is now a part of the search pages list,

whereas before it was a separate process and

also a separate codebase. Every search page

has a title, a path, a designated environment

where it should send its requests to and nat-

urally an edit link, a clone link and a delete

link where it is allowed. It is by default not

allowed to remove the core search page since this would break the whole process. This breakage

is due to the dependency on the Search module within Drupal Core. More about that in the

next paragraph.

12View more about Deployment and Drupal at http://drupalize.me/videos/

introduction-drupal-features-module
13Ctools is a module that is available on http://drupal.org/project/ctools and is primarily a set of APIs

and tools to improve the developer experience

http://drupalize.me/videos/introduction-drupal-features-module
http://drupalize.me/videos/introduction-drupal-features-module
http://drupal.org/project/ctools

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 53

Figure 5.5: Search Page Configuration : Label

and Description

Edit a Search Page First and foremost a

search page needs a label and optionally a de-

scription. A compliant machine name will be

automatically generated from the label. An-

other option that is critical is the question to

the site creator wether the search page, that

is being shown, should be the default search

page. This has implications such as to which

search page the search block should forward

its requests to.

Search Page Configuration : Informa-

tion What follows is the selection of the

search environment. As explained earlier

a search environment is a place where the

queries can be sent to. Each Drupal site can

have multiple search environments if needed.

By default it will select the default search en-

vironment in the search page configuration.

The title field allows the site creator to have a

dynamic search title whenever a search is be-

ing executed. For example, if a user searches

for ”Foo”, the title of the search results will

be : Search results for ”Foo”. To generate

this the site creator should fill in the configu-

ration with ”Search results for %value”. Next

up is the path, a critical part of the search

page since this will be the value that is shown

in the URL. For the adventurous site creator

there is an option to supply a custom filter.

This means that when a search page is cre-

ated to search within blogs only, the custom

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 54

filter should have the value ”bundle:blog” 14.

This allows deep customizations to any search

page and allows site creators to fine tune their site. Multiple filters can be entered if they are

separated with a comma.

Figure 5.6: Setting : Show enabled facets’

blocks under the search box

Search Page Configuration : Ad-

vanced options Most of the settings here

as self-explanatory. For instance, one can

set the amount of search results per page

or enable the spellchecker. It also al-

lows the site creator to allow user in-

put from the URL (mysite.com?q=test&fq=

userinput) for manual faceted search. This

will only work after a search term is en-

tered. The recommended course here is to

leave this unchecked unless one really knows

what he/she is doing. The behavior on empty

search setting allows the site creator to choose

what to do when an empty search is being ex-

ecuted. Figure 5.6 and Figure 5.7 show the

impact of these settings for the end user.

Functions One of the major issues that was

resolved is #1314406 15 which made it possible

that the core search page is approached in the same way as any custom search page.

1 <?php

2

3 /**

4 * Menu callback for the overview page showing custom search pages and blocks.

5 * @return array £build

6 */

7 function apachesolr_search_page_list_all() {

14Granted that the content type has a machine name ”blog”
15http://drupal.org/node/1314406 by Nick vh, scor: Fixed De-duplication of the apachesolr search execute()

and apachesolr search user defined search page().

mysite.com?q=test&fq=userinput
mysite.com?q=test&fq=userinput
http://drupal.org/node/1314406

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 55

Figure 5.7: Setting : Show enabled facets’ blocks in their configured regions and first page of

all available results. As one can see it looks like a real search, but looking closer to the search

box there is no search keyword entered.

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 56

8

9 /**

10 * Listing of all the search pages

11 * @return array £build

12 */

13 function apachesolr_search_page_list_pages() {

14

15 /**

16 * Listing of all the search blocks

17 * @return array £build

18 */

19 function apachesolr_search_page_list_blocks() {

20

21 /**

22 * Menu callback/form-builder for the form to create or edit a search page.

23 * This function signature also involves a validate and submit functions, but

24 * are not shown in this document.

25 */

26 function apachesolr_search_page_settings_form($form, &$form_state, $search_page = NULL) {

27

28 /**

29 * Callback element needs only select the portion of the form to be updated.

30 * Since #ajax[’callback’] return can be HTML or a renderable array (or an

31 * array of commands), we can just return a piece of the form.

32 */

33 function apachesolr_search_ajax_search_page_default($form, $form_state, $search_page = NULL) {

34

35 /**

36 * Used as a callback function to generate a title for the taxonomy term

37 * depending on the input in the configuration screen

38 * @param integer £search_page_id

39 * @param integer £value

40 * @return String

41 */

42 function apachesolr_search_get_taxonomy_term_title($search_page_id = NULL, $value = NULL) {

43

44 /**

45 * Used as a callback function to generate a title for a user name depending

46 * on the input in the configuration screen

47 * @param integer £search_page_id

48 * @param integer £value

49 * @return String

50 */

51 function apachesolr_search_get_user_title($search_page_id = NULL, $value = NULL) {

52

53 /**

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 57

54 * Used as a callback function to generate a title for a node/page depending

55 * on the input in the configuration screen

56 * @param integer £search_page_id

57 * @param integer £value

58 * @return String

59 */

60 function apachesolr_search_get_value_title($search_page_id = NULL, $value = NULL) {

61

62 /**

63 * Get or set the default search page id for the current page.

64 */

65 function apachesolr_search_default_search_page($page_id = NULL) {

66

67 /**

68 * Load a search page

69 * @param string £page_id

70 * @return array

71 */

72 function apachesolr_search_page_load($page_id) {

73

74 /**

75 * Save a search page

76 * @param stdObject £search_page

77 */

78 function apachesolr_search_page_save($search_page) {

79

80 /**

81 * Clone a search page

82 * @param £page_id

83 * The page identifier it needs to clone.

84 */

85 function apachesolr_search_page_clone($page_id) {

86

87 /**

88 * Return all the saved search pages

89 * @return array £search_pages

90 * Array of all search pages

91 */

92 function apachesolr_search_load_all_search_pages() {

93

94

95 /**

96 * Implements hook_search_page().

97 * @param £results

98 * The results that came from apache solr

99 */

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 58

100 function apachesolr_search_search_page($results) {

101

102 /**

103 * Mimics apachesolr_search_search_page() but is used for custom search pages

104 * We prefer to keep them seperate so we are not dependent from core search

105 * when someone tries to disable the core search

106 * @param £results

107 * The results that came from apache solr

108 * @param £build

109 * the build array from where this function was called. Good to append output

110 * to the build array

111 * @param £search_page

112 * the search page that is requesting an output

113 */

114 function apachesolr_search_search_page_custom($results, $search_page, $build = array()) {

115

116 /**

117 * Executes search depending on the conditions given.

118 * See apachesolr_search.pages.inc for another use of this function

119 */

120 function apachesolr_search_search_results($keys = NULL, $conditions = NULL, $search_page = NULL) {

121

122 /**

123 * Handle browse results for empty searches.

124 */

125 function apachesolr_search_page_browse($empty_search_behavior, $env_id) {

126

127 /**

128 * Returns whether a search page exists.

129 */

130 function apachesolr_search_page_exists($search_page_id) {

Listing 10: All the function signatures that are involved in the the search pages part of the

Apache Solr module

Testing For the search environments tests were written as functional tests. As explained

earlier these tests try to assess the functionality from an UI point of view.

1 <?php

2 /**

3 * Asserts that we create a new search page and remove it again

4 */

5 function testNewAndRemoveSearchPage() {

6 // Create a new search page

7 $this->drupalLogin($this->admin_user);

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 59

8 $this->drupalGet(’admin/config/search/apachesolr/search-pages’);

9 $this->assertText(t(’Add search page’), t(’Create new search page link is available’));

10 $this->clickLink(t(’Add search page’));

11 $this->assertText(t(’The human-readable name of the search page configuration.’), t(’Search page creation page succesfully added’));

12 $edit = array(

13 ’page_id’ => ’solr_testingsuite’,

14 ’env_id’ => ’solr’,

15 ’label’ => ’Test Search Page’,

16 ’description’ => ’Test Description’,

17 ’page_title’ => ’Test Title’,

18 ’search_path’ => ’search/searchdifferentpath’,

19);

20 $this->drupalPost($this->getUrl(), $edit, t(’Save configuration’));

21 $this->assertResponse(200);

22 // Make sure the menu is recognized

23 drupal_static_reset(’apachesolr_search_page_load’);

24 menu_cache_clear_all();

25 menu_rebuild();

26 $this->drupalGet(’admin/config/search/apachesolr/search-pages’);

27 $this->assertText(t(’Test Search Page’), t(’Search Page was succesfully created’));

28

29 // Remove the same environment

30 $this->clickLink(t(’Delete’));

31 $this->assertText(t(’search page configuration will be deleted.This action cannot be undone.’), t(’Delete confirmation page was succesfully loaded’));

32 $this->drupalPost($this->getUrl(), array(), t(’Delete page’));

33 $this->assertResponse(200);

34 drupal_static_reset(’apachesolr_search_page_load’);

35 $this->drupalGet(’admin/config/search/apachesolr/search-pages’);

36 $this->assertNoText(t(’Test Search Page’), t(’Search Environment was succesfully deleted’));

37 }

Listing 11: Example of a search environment test

1 <?php

2

3 /**

4 * Checks if the core search page is available

5 * when the module is installed

6 */

7 function testCheckCoreSearchPage() {

8

9 /**

10 * Asserts that we can edit a search page

11 */

12 function testEditSearchPage() {

13

14 /**

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 60

15 * Asserts that we can clone a search environment

16 */

17 function testCloneSearchPage() {

18

19 /**

20 * Asserts that we create a new search page and remove it again

21 */

22 function testNewAndRemoveSearchPage() {

Listing 12: All the test signatures concerning the search environments

Figure 5.8: In total 110 tests assessments were written in 4 functional tests for the search

environments, all of them pass

Exportable Similarly to the Search Environments all search pages are exportable. See Search

Environments for a deeper understanding.

5.2.3 Query Object

This class allows you to make operations on a query that will be sent to Apache Solr. methods

such as adding and removing sorts, remove and replace parameters, adding and removing filters,

getters and setters for various parameters and more. During the timeframe of this work not a

lot of changes were made to this class but some are worthy to mention.

User input validation The attached snippet takes care of a half-restrictive validation of user

input. This snippet was written by thorough testing and reading up on the essence of regular

expression. Gratitude goes out to all that try to explain regular expressions online and to peo-

ple that helped testing it 16http://drupal.org/node/1313698 by Nick vh, denikin: Fixed Support

for search of multiword content in facets/fields.. The problem was that a filter as complex as ”fq=

{!cache=falsecost=5}inStock:true&fq={!frangel=1u=4cache=falsecost=50}sqrt(popularity)”

but also a filter as simple as ”fq={!bundle:(articleORpage)}” should be validated properly

16

fq={!cache=false cost=5}inStock:true&fq={!frange l=1 u=4 cache=false cost=50}sqrt(popularity)
fq={!cache=false cost=5}inStock:true&fq={!frange l=1 u=4 cache=false cost=50}sqrt(popularity)
fq={!bundle:(article OR page)}

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 61

The function was divided in 4 main parts and the function is also included for closer inspec-

tion to those that are interested.

1. Breaking up the string into to separate parts. The different parts are defined as ”name”

and ”value”.

2. Validates the name and the value of the filter

3. Validates opening and closing brackets

4. Validate date value syntax if it is a date.

1 <?php

2 /**

3 * Make sure our query matches the pattern name:value or name:"value"

4 * Make sure that if we are ranges we use name:[AND]

5 * allowed inputs :

6 * a. bundle:article

7 * b. date:[1970-12-31T23:59:59Z TO NOW]

8 * Split the text in 4 different parts

9 * 1. name, eg.: bundle or date

10 * 2. The first opening bracket (or nothing), eg.: [

11 * 3. The value of the field, eg. article or 1970-12-31T23:59:59Z TO NOW

12 * 4. The last closing bracket, eg.:]

13 * @param string £filter

14 * The filter to validate

15 * @return boolean

16 */

17 public static function validFilterValue($filter) {

18 $opening = 0; $closing = 0; $name = NULL; $value = NULL;

19 if (preg_match(’/(?P<name>[^:]+):(?P<value>.+)?$/’, $filter, $matches)) {

20 foreach ($matches as $match_id => $match) {

21 switch($match_id) {

22 case ’name’ :

23 $name = $match;

24 break;

25 case ’value’ :

26 $value = $match;

27 break;

28 }

29 }

30 // For the name we allow any character that fits between the A-Z0-9 range and

31 // any alternative for this in other languages. No special characters allowed

32 if (!preg_match(’/^[a-zA-Z0-9_\x7f-\xff]+$/’, $name)) {

33 return FALSE;

34 }

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 62

35 // For the value we allow anything that is UTF8

36 if (!drupal_validate_utf8($value)) {

37 return FALSE;

38 }

39 // Check our bracket count. If it does not match it is also not valid

40 $valid_brackets = TRUE;

41 $brackets[’opening’][’{’] = substr_count($value, ’{’);

42 $brackets[’closing’][’}’] = substr_count($value, ’}’);

43 $valid_brackets = ($brackets[’opening’][’{’] != $brackets[’closing’][’}’]) ? FALSE : TRUE;

44 $brackets[’opening’][’[’] = substr_count($value, ’[’);

45 $brackets[’closing’][’]’] = substr_count($value, ’]’);

46 $valid_brackets = ($brackets[’opening’][’[’] != $brackets[’closing’][’]’]) ? FALSE : TRUE;

47 $brackets[’opening’][’(’] = substr_count($value, ’(’);

48 $brackets[’closing’][’)’] = substr_count($value, ’)’);

49 $valid_brackets = ($brackets[’opening’][’(’] != $brackets[’closing’][’)’]) ? FALSE : TRUE;

50 if (!$valid_brackets) {

51 return FALSE;

52 }

53

54 // Check the date field inputs

55 if (preg_match(’/\[(.+) TO (.+)\]$/’, $value, $datefields)) {

56 // Only Allow a value in the form of

57 // http://lucene.apache.org/solr/api/org/apache/solr/schema/DateField.html

58 // http://lucene.apache.org/solr/api/org/apache/solr/util/DateMathParser.html

59 // http://wiki.apache.org/solr/SolrQuerySyntax

60 // 1976-03-06T23:59:59.999Z (valid)

61 // * (valid)

62 // 1995-12-31T23:59:59.999Z (valid)

63 // 2007-03-06T00:00:00Z (valid)

64 // NOW-1YEAR/DAY (valid)

65 // NOW/DAY+1DAY (valid)

66 // 1976-03-06T23:59:59.999Z (valid)

67 // 1976-03-06T23:59:59.999Z+1YEAR (valid)

68 // 1976-03-06T23:59:59.999Z/YEAR (valid)

69 // 1976-03-06T23:59:59.999Z (valid)

70 // 1976-03-06T23::59::59.999Z (invalid)

71 if (!empty($datefields[1]) && !empty($datefields[2])) {

72 // Do not check to full value, only the splitted ones

73 unset($datefields[0]);

74 // Check if both matches are valid datefields

75 foreach ($datefields as $datefield) {

76 if (!preg_match(’/(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:[\d\.]{2,6}Z(\S)*)|(^([A-Z*]+)(\A-Z0-9\+\-\/)*)/’, $datefield, $datefield_match)) {

77 return FALSE;

78 }

79 }

80 }

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 63

81 }

82 }

83 return TRUE;

84 }

Listing 13: Validating user input. Custom filters in search pages or user input from URL

Figure 5.9: In total 79 test assesments

were written in 3 unit tests for the

search environments, all of them pass

Testing Naturally, functionality like this should be

tested so mistakes like these do not occur again. To do

this a list was set up with good and bad queries.

Good Combinations

• !cache=falseinStock:true’]

• !frange l=1 u=4 cache=falsesqrt(popularity)’]

• !cache=false cost=5inStock:true’]

• !tag=impalamodel:Impala’]

• !anything that appears to be local’]

• bundle:(article OR page)’]

• -bundle:(article OR page)’]

• -!anything that appears to be local’]

• title:”double words”’]

• field date:[1970-12-31T23:59:59Z TO NOW]’]

Bad combinations

• wrong name:”double words”’]

• field date:[1970-12-31 TO NOW]’]

• bundle:((article OR page)]’]

These tests now all report back as succeeded. The test suite for the base query also includes

tests such as parsing the filters, adding and removing the filters, adding search keywords to the

query and last but not least the support for subqueries 17.

17Subqueries basically allow two query objects to be merged into one

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 64

5.2.4 Entity layer

Entity support for Drupal 7 Drupal 7 introduced entities 18 which was a huge leap forward.

Originally, in Drupal 6 there was only one concept and that was content types (referred to as

a node). In Drupal 7 this changed, thanks to the Entity Api, and it can now add fields to

any entity. A content type is an entity now, but also users and terms. An entity is a useful

abstraction to group fields. On top of that the concept of bundles was introduced. Bundles are

an implementation of an entity type, similar to a subtype of an entity.

Back when the Apache Solr module was first created, there was no such thing as the Entity

Api and the architecture couldn’t take this change into account. After some time it became

apparent that developers wanted to have support for entities to fulfill the needs of their clients.

During these months a particular issue 19 in the issue queue got a lot of attention. Over 145

comments were made and a bunch of patches were posted. Ultimately the patch got accepted

and it opened up perspectives for new entity support in the Apache Solr module. A set of

new API functions became available and some modules like apachesolr user indexing 20, apach-

esolr commerce 21 and apachesolr term 22 are already using the new API possibilities.

1 <?php

2 /**

3 * Add information to index other entities.

4 * There are some modules in http://drupal.org that can give a good example of

5 * custom entity indexing such as apachesolr_user_indexer, apachesolr_term

6 * @param array £entity_info

7 */

8 function hook_apachesolr_entity_info_alter(&$entity_info) {

9

10 /**

11 * Build the documents before sending them to Solr.

12 * The function is the follow-up for apachesolr_update_index

13 *

14 * @param integer £document_id

15 * @param array £entity

16 * @param string £entity_type

17 */

18 function hook_apachesolr_index_document_build(ApacheSolrDocument $document, $entity, $entity_type, $env_id) {

18Introduction to entities http://drupal.org/node/1261744
19http://drupal.org/node/966796 by Nick vh, scor, BarisW, wesnick, swentel, LSU JBob — Crell: Added

Separate indexer for multiple entity types.
20http://drupal.org/project/apachesolr_user_indexer
21http://drupal.org/project/apachesolr_commerce
22http://drupal.org/project/apachesolr_term

http://drupal.org/node/1261744
http://drupal.org/node/966796
http://drupal.org/project/apachesolr_user_indexer
http://drupal.org/project/apachesolr_commerce
http://drupal.org/project/apachesolr_term

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 65

19

20 /**

21 * Build the documents before sending them to Solr.

22 *

23 * Supports all types of

24 * hook_apachesolr_index_document_build_’ . £entity_type(£documents[£id], £entity, £env_id);

25 *

26 * The function is the follow-up for apachesolr_update_index but then for

27 * specific entity types

28 *

29 * @param £document

30 * @param £entity

31 * @param £entity_type

32 */

33 function hook_apachesolr_index_document_build_ENTITY_TYPE(ApacheSolrDocument $document, $entity, $env_id) {

Listing 14: Api functions to support multiple entities

5.2.5 Performance optimizations

Performance during indexing There were a couple of issues open in the queue that go

back to 2009. One 23of them is interesting enough to explain here. Before the problem is

explained the reader should be aware that Drupal 7 incorporates a database layer, commonly

referred to as DBTNG 24. The Drupal database layer is built atop PHP’s PDO library. PDO

provides a unified, object-oriented API for accessing different databases but it does not provide

an abstraction for the different dialects of SQL used by different databases.

Exactly this abstraction is strapping us here. MySQL has some flaws that became clear

after reading the Stackoverflow source 25 about in conditions in MySQL. In summary, whenever

a query is done in the form of :

SELECT * FROM sometable WHERE type IN(SELECT type FROM content WHERE bundle = "BLOG");

Listing 15: Example of a problematic query in MySQL

it could produce slow results. DBTNG follows the SQL 1999 standard 26 and this kind of

query is absolutely allowed. So whenever a subquery is used to generate the parameters for the

23http://drupal.org/node/592522 by Nick vh, pwolanin — quaoar: Hooks node type(), taxonomy and user

knocks out our database server.
24http://drupal.org/developing/api/database
25http://stackoverflow.com/questions/3417074/why-would-an-in-condition-be-slower-than-in-sql/

3417190#3417190
26http://en.wikipedia.org/wiki/SQL:1999

http://drupal.org/node/592522
http://drupal.org/developing/api/database
http://stackoverflow.com/questions/3417074/why-would-an-in-condition-be-slower-than-in-sql/3417190#3417190
http://stackoverflow.com/questions/3417074/why-would-an-in-condition-be-slower-than-in-sql/3417190#3417190
http://en.wikipedia.org/wiki/SQL:1999

5.2 Apache Solr module for Drupal 7 version 7.x-1.0 66

IN set, it could lead to performance problems for MySQL. Most other database backends have

resolved this problem already. Since it is known that most servers where Drupal is run are still

using MySQL, the module had to be adjusted to solve this problem.

Different query per database type After some research was done we found a way to

retrieve the same result set but by executing a different query against MySQL. Unfortunately

there was no way to write this type of SQL with the DBTNG layer at the moment of the patch

because the update query does not support adding extra JOIN’s 27. Finally it was decided that

an extra query for MySQL would be added and that the program would switch depending on

the database type the Drupal website was running on.

<?php

/**

* £table = the table where the indexable nodes are located

* £account = the account of the user that is indexing

*/

switch (db_driver()) {

case ’mysql’ :

$table = db_escape_table($table);

$query = "UPDATE {{$table}} asn

INNER JOIN {node} n ON asn.entity_id = n.nid SET asn.changed = :changed

WHERE n.uid = :uid";

$result = db_query($query, array(’:changed’ => REQUEST_TIME,

’:uid’ => $account->uid,

));

break;

default :

$nids = db_select(’node’)

->fields(’node’, array(’nid’))

->where("uid = :uid", array(’:uid’ => $account->uid));

$update = db_update($table)

->condition(’nid’, $nids, ’IN’)

27http://api.drupal.org/api/drupal/includes!database!database.inc/function/db_update/7#

comment-15459

http://api.drupal.org/api/drupal/includes!database!database.inc/function/db_update/7#comment-15459
http://api.drupal.org/api/drupal/includes!database!database.inc/function/db_update/7#comment-15459

5.3 Facet Api module for Drupal 7 version 7.x-1.0 67

->fields(array(’changed’ => REQUEST_TIME))

->execute();

}

Listing 16: Switching between database types

5.3 Facet Api module for Drupal 7 version 7.x-1.0

Facet Api As explained in Chapter 4 there was also some work that was assigned to the

author to get a better integration with Facet API. Most of the work was already done by Chris

Pliakas to whom I am infintely grateful because the module works wonderfully. There were more

problems solved and if you want to read up on this subject I suggest to read the changelog.txt

of the module for full details.

5.3.1 Facet Query Types

Figure 5.10: Setting : Query type

A query type is in essence a way how Facet

API connects with its backend module to pro-

vide him data about the facets. Apache Solr

has 3 query types

• Query Type for Terms

• Query Type for Dates

• Query Type for Numeric Ranges

Each of those already existed in the

Apache Solr Module. They might have re-

ceived a small refinement but in essence they

were there. As seen in our class diagram in chapter 4 Facet API has a concept of widgets.

Widgets are a visual way in how data is presented to the user. The problem existed in the

fact that 1 facet could obtain different widgets and as a consequence it should also be able to

switch query types. For example, a list of prices (Terms) switches its widget to a slider (Numeric

Range). This example was not possible because each field was mapped to only 1 query type.

5.3 Facet Api module for Drupal 7 version 7.x-1.0 68

This was solved by making a one-to-many relationship with query types and their facets.

Progress was tracked in an issue 28. Notice that in the example the ”query type” parameter is

still present. This is due to the fact that backwards compatibility was important at that stage.

Site creators that implement facet can choose either one of them.

Figure 5.11: Different

widgets in the user in-

terface

1 <?php

2 // Before

3 ’list_integer’ => array(

4 ’indexing_callback’ => ’apachesolr_fields_default_indexing_callback’,

5 ’map callback’ => ’apachesolr_fields_list_facet_map_callback’,

6 ’index_type’ => ’integer’,

7 ’facets’ => TRUE,

8 ’query type’ => ’term’,

9 ’facet missing allowed’ => TRUE,

10),

11

12 // After

13 ’list_integer’ => array(

14 ’indexing_callback’ => ’apachesolr_fields_default_indexing_callback’,

15 ’map callback’ => ’apachesolr_fields_list_facet_map_callback’,

16 ’index_type’ => ’integer’,

17 ’facets’ => TRUE,

18 ’query types’ => array(’term’, ’numeric_range’),

19 ’query type’ => ’term’,

20 ’facet missing allowed’ => TRUE,

21),

Listing 17: A before and after view of the query types key

28http://drupal.org/node/1161434 by Nick vh, cpliakas: Modify ’query type” key in facet definition to accept

an array.

http://drupal.org/node/1161434

5.4 Backporting Facet API And Apache Solr to Drupal 6 69

5.4 Backporting Facet API And Apache Solr to Drupal 6

Backporting a module from Drupal 7 to Drupal 6 sounds easy but it is not. A programmer

is used to all the new tools that are offered to him/her such as the new database layer, some

of the Drupal 7 API changes (no more super-functions 29) and most importantly the better

theming layer. All progress was also tracked publicly in issue [#1387164] 30 for Facet API and

in [#1387628] 31 This small chapter tries to explain what was learned from this procedure.

DBTNG to MySQL Converting DBTNG was easy at first because there is a wonderful little

helper module called DBTNG for Drupal 6. It is a backport of the Drupal 7 PDO database

compatibility layer. 32 When everything runs you can start to backport the DBTNG queries to

regular MySQL queries. An easy debug function exists in Drupal 7, namely dpq() 33 that prints

out a SQL version of the query object.

Autoload Facet Api extensively uses classes and also the autoload functionality of Drupal 7.

Drupal 6 does not have this functionality so again a helper module was installed for temporary

purposes. This helper module is easily enough called ”Autoload” 34 and takes care of the lazy

loading of classes for you. Near the end of February there was a small attempt to get rid of this

dependency but there are just too many dynamic classes that it would be better if Autoload

stayed. This might be revisited in the near future if Chris Pliakas decides it should not depend

on Autoload.

Static Variables Drupal 7 has a concept of dynamic static variables using the drupal static

method 35. This drupal static are statics that are attached to the function instead of the whole

project. In Drupal 6 we do not have this concept so in Facet Api the function ctools static is

used, that mimics this behavior. 36.

29Super-functions are functions that try to do it all, in Drupal 7 most of those were replaced with separate

functions, hence the big increase in amount of functions
30http://drupal.org/node/1387164 by Nick vh, gnucifer — cpliakas: Backport Facet API to Drupal 6.
31http://drupal.org/node/1387628 by Nick vh: Backport 7.x-1.x to 6.x-3.x.
32http://drupal.org/project/dbtng
33http://api.drupal.org/api/devel/devel.module/function/dpq/7
34http://drupal.org/project/autoload
35http://api.drupal.org/api/drupal/includes!bootstrap.inc/function/drupal_static/7
36ctools static is part of the ctools module

http://drupal.org/node/1387164
http://drupal.org/node/1387628
http://drupal.org/project/dbtng
http://api.drupal.org/api/devel/devel.module/function/dpq/7
http://drupal.org/project/autoload
http://api.drupal.org/api/drupal/includes!bootstrap.inc/function/drupal_static/7

5.4 Backporting Facet API And Apache Solr to Drupal 6 70

Theming layer / Drupal Render Drupal 6 handles output very different. While in Drupal

7 everything renders at the end of a complete load, Drupal 6 renders at the level of a specific

function. This change appeared to be difficult but in the end, because of the design choice of

not to depend too much on external libraries, it was easier than expected. In the example can

be seen that the Drupal 6 version really tries to mimic as much from Drupal 7 as possible.

The reason is that when new patches come out for the Drupal 7 version they can be easily

integrated/applied to the Drupal 6 version.

1 <?php

2 // Initializes output with information about which server’s setting we are

3 // editing, as it is otherwise not transparent to the end user.

4 $output[’apachesolr_index_action_status’] = array(

5 ’#prefix’ => ’<h3>’ . t(’@environment: Search Index Content’, array(’@environment’ => $environment[’name’])) . ’</h3>’,

6 ’#theme’ => ’table’,

7 ’#header’ => array(’type’, ’value’),

8 ’#rows’ => $messages,

9);

10 $output[] = //more content in arrays

11 return $output;

12 ?>

Listing 18: Drupal 7 renderable arrays

1 <?php

2 // Initializes output with information about which server’s setting we are

3 // editing, as it is otherwise not transparent to the end user.

4 // Initializes output with information about which server’s setting we are

5 // editing, as it is otherwise not transparent to the end user.

6 $title = t(’@environment: Search Index Content’, array(’@environment’ => $environment[’name’]));

7 $output[’apachesolr_index_action_status_prefix’] = ’<h3>’ . $title . ’</h3>’;

8 $output[’apachesolr_index_action_status’] = theme(’table’, array(’type’, ’value’), $messages);

9 // Print in a similar way as the Drupal 7 version

10 $output_print = NULL;

11 foreach ($output as $print) {

12 $output_print .= $print;

13 }

14 return $output_print;

15 ?>

Listing 19: Drupal 6 Direct output

Entity to Content Type Doing a backport of the whole entity system to support of only 1

entity type ”node” with bundles was challenging, certainly because most of the API functions

5.5 Acquia Search Upgrade from 1.4 to 3.x 71

used in Drupal 7 to handle this part don’t exist in Drupal 6. This was solved by letting Apache

Solr for Drupal 6 depend on the CCK project 37. By doing this every content type in Drupal 6

got the possibility of adding extra information to it. This allowed the module to add callbacks

to specific ”bundles” in the same way as Drupal 7 did with entities and bundles. Learning by

example is the best so a comparison is included between Drupal 7 and 6 for a function that

allows a specific entity type to reindex. In Drupal 6 there is only 1 entity type available and

that is ”node”.

1 <?php

2 function apachesolr_index_mark_for_reindex($env_id, $entity_type = NULL) {

3 foreach (entity_get_info() as $type => $entity_info) {

4 if (($type == $entity_type) || ($entity_type == NULL)) {

5 if ($entity_info[’apachesolr’][’indexable’]) {

6 $bundles = apachesolr_get_index_bundles($env_id, $type);

7 $reindex_callback = ’’;

8 if (!empty($bundles)) {

9 $reindex_callback = apachesolr_entity_get_callback($type, ’reindex callback’);

10 }

11 ...

Listing 20: Drupal 7 version for indexing a specific entity type for reindexation.

1 <?php

2 function apachesolr_index_mark_for_reindex($env_id, $entity_type = ’node’) {

3 foreach (content_types() as $content_type => $entity_info) {

4 if (!empty($entity_info[’extra’][’apachesolr’][’index’])) {

5 $reindex_callback = apachesolr_entity_get_callback($entity_type, ’reindex callback’);

6 }

7 ...

Listing 21: Drupal 6 Port of the same function, using content types. A function from CCK

5.5 Acquia Search Upgrade from 1.4 to 3.x

As clarified earlier, Acquia Search is the hosted search solution of Acquia. They provide first

class support to customers that do not want to maintain their Apache Solr servers. They also

take care of security and previously an employee of Acquia wrote an extension for Apache Solr

1.4 to add the HMAC authentication. This HMAC authentication was added by using a Java

Filter Servlet.

37Content Construction Kit http://drupal.org/project/cck

http://drupal.org/project/cck

5.5 Acquia Search Upgrade from 1.4 to 3.x 72

The problem However, Acquia Search needed to keep up with the latest stable version of

Apache Solr which is 3.5. When the Java Filter Servlet was applied to Apache Solr 3.5 it did not

work. Acquia wanted to hire an external consultant at first to fix the problem but fortunately,

after investing a fair amount of hours into the problem a solution was found.

5.5.1 Java Filter Servlet

In Solr 1.4, response.getWriter() was used by the SolrDispatchFilter for any character based

responses – but in version of Solr 3.4+, because of the issues related to SOLR-2381 38, Sol-

rDispatchFilter was modified to use response.getOutputStream() for both binary and character

based streams.

The filter that was written only had support for the getWriter method so support had to

be added for the getOutputStream method. The servlet was upgraded to support Solr 3.5 in a

couple of days (and weekend). It took a lot of sweat because of unfamiliarity with Java code and

more specifically with the Solr Source code but using the issue queue of the Solr project and the

help from core Solr developers, who admittedly saw that the author was a beginner in the area

39, a servlet was written that supported this new getOutputStream. One of the biggest aha-

moments was to change the ResponseWrapper to inherit the getOutputStream method.

1 response.setCharacterEncoding("UTF-8");

2 PrintWriter out = response.getWriter();

3 CharResponseWrapper wrapper = new CharResponseWrapper(

4 (HttpServletResponse) response);

5

6 chain.doFilter(request, wrapper);

7 String responseBody = wrapper.toString();

8

9 //write the outgoing header

10 response.setHeader("Pragma", "hmac_digest=" +

11 buildResponseHmac(authenticator, responseBody, s) + ";");

12

13 out.write(responseBody);

14 out.close();

Listing 22: A snippet of the original Acquia HMAC Filter for Solr 1.4.

1 CharResponseWrapper newResponse = new CharResponseWrapper(

2 (HttpServletResponse) response);

38https://issues.apache.org/jira/browse/SOLR-2381
39https://issues.apache.org/jira/browse/SOLR-2878

https://issues.apache.org/jira/browse/SOLR-2381
https://issues.apache.org/jira/browse/SOLR-2878

5.5 Acquia Search Upgrade from 1.4 to 3.x 73

3

4 // CharResponseWrapper is responsible for the getWriter and

5 // getOutputStream support.

6

7 chain.doFilter(request, newResponse);

8 // The response works with byteArrays so we do to

9

10 byte[] responseBody = newResponse.getBytes();

11 // Write the outgoing header with the ByteArray (Performance)

12

13 response.addHeader("pragma", "auth=" +

14 buildAuthentication(responseBody) + ";");

15 // Force the encoding to UTF-8 since we know Drupal works with UTF-8

16 response.setCharacterEncoding("UTF-8");

17 response.getOutputStream().write(responseBody);

18 response.getOutputStream().flush();

Listing 23: A snippet of the Acquia HMAC Filter for Solr 3.5. The buildAuthentication returns

the value that is embedded in the HTTP headers so the client can verify the validity of the

response.

5.5.2 Performance testing

Merge Policies Drupal is an application that has very deep integration with the Apache Solr

application and is updating Solr during cron runs (every 30 minutes for example). This does

imply that the indexing speed should not be very high but the search speed should be. Apache

Solr has a concept of segments (your index is spread over multiple segments) and if a search is

executed it needs to gather all these segments and search them. Logically, more segments =

slower results. Solr 1.4 already had some MergePolicy’s such as LogByteSizeMergePolicy 40 and

LogDocMergePolicy 41. Solr 3.5 came with a new default MergePolicy and that required some

testing to see if this new MergePolicy (TieredMergePolicy 42) could be trusted and what effect

it has on existing Drupal indexes. More information regarding these merge policies can be found

online at http://java.dzone.com/news/merge-policy-internals-solr. Jmeter was used to

load existing Apache access logs and replay them on existing indexed. [Mottram(2004)] has been

the main source for the start of the script that was written for Acquia. Also [Ejsmont(2009)]

40http://lucene.apache.org/java/3_2_0/api/all/org/apache/lucene/index/LogByteSizeMergePolicy.

html
41http://lucene.apache.org/java/3_2_0/api/all/org/apache/lucene/index/LogDocMergePolicy.html
42http://lucene.apache.org/java/3_2_0/api/all/org/apache/lucene/index/TieredMergePolicy.html

http://java.dzone.com/news/merge-policy-internals-solr
http://lucene.apache.org/java/3_2_0/api/all/org/apache/lucene/index/LogByteSizeMergePolicy.html
http://lucene.apache.org/java/3_2_0/api/all/org/apache/lucene/index/LogByteSizeMergePolicy.html
http://lucene.apache.org/java/3_2_0/api/all/org/apache/lucene/index/LogDocMergePolicy.html
http://lucene.apache.org/java/3_2_0/api/all/org/apache/lucene/index/TieredMergePolicy.html

5.5 Acquia Search Upgrade from 1.4 to 3.x 74

was an important asset to have in order to successfully complete the task.

Summary of the testing procedure

1. Load existing index files in to a new core.

2. Extract Documents from this index.

3. Use the extracted documents to insert them in a clean and new core with different config-

uration.

4. Re-run the access log of that subscription for the searches, repeat this twice, use 10000

queries per access log and discard everything except the select queries and repeat this

process 3 times to make sure we have a balanced result set.

Charts and extra legend information

• S14 stands for Solr 1.4

• S35 stands for Solr 3.5

• LB stands for Load Balancer

• SL stands for Slave, this means that the attack happened from the LB to the SL (these

results happened 3 times in order to contain less variable delays)

• MA stands for Master, this means that the attack happened from the LB to the MA (these

results happened 3 times in order to contain less variable delays)

• MergeFactor for LogbyteMerge and LogDocMerge is set to 4

• Default means the Default merge policy, Solr 1.4 this is LogByteMergePolicy and for Solr

3.5 this depends on the LuceneMatchVersion

• L35 means that Lucene has been set to Lucene 3.5 instead of the default

• When Lucene 3.5 is set for Solr 3.5 and no merge policy was set, this defaults to Tiered-

MergePolicy

• When Settings is defined, it applies to specific TieredMergePolicy settings

1. maxMergeAtOnce says how many segments can be merged at a time for ”normal”

(not optimize) merging

2. segmentsPerTier controls how many segments you can tolerate in the index (bigger

number means more segments)

Specifications of the test machines

5.5 Acquia Search Upgrade from 1.4 to 3.x 75

Figure 5.12: Speed of quering after indexing a site with 32912 Documents

Specifications of the Master

• Large Instance

• 7.5 GB memory

• 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each)

Specifications of the Slave

• High-CPU Medium Instance

• 1.7 GB of memory

• 5 EC2 Compute Units (2 virtual cores with 2.5 EC2 Compute Units each)

Results

5.5 Acquia Search Upgrade from 1.4 to 3.x 76

Figure 5.13: Speed of quering after indexing a site with 4996 Documents

5.5 Acquia Search Upgrade from 1.4 to 3.x 77

Figure 5.14: Size of the segments for all the different test results

Conclusions If one wants to migrate to Solr 3.5 coming from Solr 1.4 with low risk of changes

one should keep using the LogByteMergePolicy with a merge-factor of 4 (Default in the Drupal

configs). However, the TieredMergePolicy is interesting when understood correctly. For a better

understanding more investigation should be done.

The big outcome of this test is that Solr 3.5 versus 1.4 is a big performance win. Also it is good

to know that the MergePolicy should be set explicitly when using LuceneMatchVersion in the sol-

rconfig.xml. This exact conclusion and result is also publicly available on the blog of the Author

at http://nickveenhof.be/blog/upgrading-apache-solr-14-35-and-its-implications.

http://nickveenhof.be/blog/upgrading-apache-solr-14-35-and-its-implications

5.6 Additional Modules created to empower users to use the Apache Solr Module suite 78

5.6 Additional Modules created to empower users to use the

Apache Solr Module suite

5.6.1 Facet Api Slider

Figure 5.15: A real life use case of

the Facet Api Slider, implemented by

Dataflow http://dataflow.be/. The

image is a part of the UI for clients

that are trying to find a property for

sale or or rent.

Use and reason The Facetapi Slider 43 was created

to make maximum use of the range query type. It al-

lows site creators to easily switch the UI from a list of

numeric values to a slider where one can set the mini-

mum and the maximum and the search will be filtered

within this range.

Creating it was not very easy since we had to keep

the minimum and the maximum for the global set and

also the values that were set by the user. Creating a

usable experience proved difficult and there are still dis-

cussions 44 ongoing how to improve this process.

5.6.2 Apache Solr Term

The Apache Solr Term module 45 provides basic in-

dexing of the taxonomy terms. It makes use of the new

entity indexer that was pushed into to the Apache Solr

module and allows site creators to index terms, with at-

tached fields. But moreover, users can search for terms.

5.6.3 Apache Solr Commerce

The Apache Solr Term module 46 provides basic in-

dexing of commerce entity types. It makes use of the

new entity indexer that was pushed in to the Apache

Solr module and allows site creators to index items that

are for sale, including their price, with attached fields.

43http://drupal.org/project/facetapi_slider
44http://drupal.org/project/issues/facetapi_slider
45http://drupal.org/project/apachesolr_term
46http://drupal.org/project/apachesolr_commerce

http://dataflow.be/
http://drupal.org/project/facetapi_slider
http://drupal.org/project/issues/facetapi_slider
http://drupal.org/project/apachesolr_term
http://drupal.org/project/apachesolr_commerce

5.6 Additional Modules created to empower users to use the Apache Solr Module suite 79

When combined with the Facet Api Slider it makes up

for a powerful experience in a webshop.

5.6.4 Apache Solr User

The Apache Solr User module 47 provides basic index-

ing of the user entities. It makes use of the new entity

indexer that was pushed in to the Apache Solr module and allows site creators to index user

entities, with attached fields. But moreover, users can search for other users and for example,

in their profile.

5.6.5 Apache Solr Sort UI

Figure 5.16: Apache Solr Sort UI sort

selection

The Apache Solr Sort UI module existed already in

an earlier stage, primarily written by drupal sensei 48 to

serve the need of a configurable settings page that allows

the site creator to choose which fields are available to

sort on and what the weight should be when those are

listed.

47http://drupal.org/project/apachesolr_user
48http://drupal.org/user/721548

http://drupal.org/project/apachesolr_user
http://drupal.org/user/721548

RELATED WORK 80

Chapter 6

Related Work

This chapter surveys previous work towards integrating a search application with Drupal. The

main differences here are the way the module has been structured and how deeply it was gener-

alized to be used as a broad concept. Two different themes are discussed here. One of them are

the search appliances that provide a backend to send data to and allow quick full-text search.

The other one are Drupal search integration solutions that try to connect Drupal with one of

those search appliances

6.1 Elastic Search

Search Appliance Elastic Search 1 (abbreviation ES) is fairly new and is also built upon the

Apache Lucene software. It is an Open Source, Distributed and Restful Search Engine. The

main goal of ES is to scale high and allow real time search. Another difference with the Solr

project is that ES works without a predefined schema. This has the consequence that whenever

a new ES core is defined, the application should communicate his preferred schema options with

the ES application. ES hosts their code on Github, allowing people to fork and to inspect the

code more easily compared to the Apache Solr Project. ES is certainly an option to look at for

future projects. Unfortunately the Apache Solr Search Integration Module is currently deeply

linked with the Apache Solr project and ES might not be mature enough for big enterprise

clients. Concerning the Real Time Search, this is a feature in Lucene 3.x that Solr currently

does not use. However, As soon as Solr 4.0 will be released 2 it will offer a very similar feature

as ES.

1http://www.elasticsearch.org/
2http://wiki.apache.org/solr/NearRealtimeSearch

http://www.elasticsearch.org/
http://wiki.apache.org/solr/NearRealtimeSearch

6.1 Elastic Search 81

Drupal Integration ES has a Drupal project 3 that is less than a year old. Created by

JoeMcGuire 4 as an extension for Search API. The feature set is still very limited and with a

reported amount of 12 active users it does not look very promising. However, since it is open

source there is always room for improvement and as soon as a company funds development

I foresee a great growth. The Drupal module only supports Drupal 7 since Search API only

supports Drupal 7.

Conclusion Very interesting project, very attractive and easy setup and allows a schema-less

search. However, real time search is only a temporary exclusive feature since both projects are

based on Lucene. Promoted to be the best in the cloud but still has a reputation to build up.

Drupal integration is almost non-existing.

6.1.1 Sphinx

Sphinx is a free software search engine designed with indexing database content in mind. It cur-

rently supports MySQL, PostgreSQL, and ODBC-compliant databases as data sources natively.

Other data sources can be indexed via pipe in a custom XML format. It is distributed under

the terms of the GNU General Public License version two or a proprietary license. 5 Starting

from version 0.9.9, querying is possible using SphinxQL, a subset of SQL. Starting from version

1.10-beta, both incremental (via Real-Time backend6) and batch indexing is supported.

Drupal integration Sphinx has a dedicated Drupal module 7 that is not dependent on other

modules. It has versions for Drupal 5 and 6 but with 40 active users it also does not look very

promising. The latest update was done about a year ago so it looks like it is not supported

anymore. Sphinx search 8 is another Drupal Integration module that seems to be a bit more

active at first sight, but the last code update was about 3 years ago and no stable release ever

came out.

Conclusion Sphinx seems to be unsupported for Drupal 7 at first sight. It could be that

major websites do custom implementation of the Sphinx search but it certainly does not seem

3http://drupal.org/project/elasticsearch
4http://drupal.org/user/416411
5http://sphinxsearch.com/licensing.html
6http://sphinxsearch.com/docs/current.html#rt-indexes
7http://drupal.org/project/sphinx
8http://drupal.org/project/sphinxsearch

http://drupal.org/project/elasticsearch
http://drupal.org/user/416411
http://sphinxsearch.com/licensing.html
http://sphinxsearch.com/docs/current.html#rt-indexes
http://drupal.org/project/sphinx
http://drupal.org/project/sphinxsearch

6.2 Search API 82

that way.

6.2 Search API

Concept The goal of Search API is to build a generic Search API that will on the one hand

abstract from the data source (using the entity metadata module) — thus allowing all kinds of

entities to be as easily indexed and searched as nodes —, and from the indexer / search engine

on the other hand, making concrete implementations like Solr, Lucene, Xapian, . . . implement

only the specific details and thereby eliminating unnecessary code duplication. [Seidly(2011)] 9 It

provides a framework for easily creating searches on any entity known to Drupal, using any kind

of search engine. For site administrators, it is a great alternative to other search solutions, since

it already incorporates facetting support and the ability to use the Views module for displaying

search results, filters, etc. Also, with the Apache Solr integration, a high-performance search

engine is available for this module. Developers, on the other hand, will be impressed by the large

flexibility and numerous ways of extension the module provides. Hence, the growing number of

additional contributed modules, providing additional functionality or helping users customize

some aspects of the search process. 10 Search API tries to provide this generic solution so all

search backends can plug in to the Drupal 7 search system. While this is very promising and

while it functions very well for teh MySQL backend it lacks some Solr expertise when we look

at the Solr backend plugin 11.

Conclusion Search API is well on its way to provide a generic approach for backends to plug

in to Drupal 7 (and possibly future versions). However, this is still a work in progress but in

contrary to Sphinx and Elastic Search it has build up quite an audience of contributors and it

will be worth using it in the near future when Drupal 8 is around the corner. It would be good

if the Search Api Solr project copies a bit more from the Apache Solr Search Integration Module

because it could make the solr performance better. Definitely worth to monitor.

9http://groups.drupal.org/node/71158
10http://drupal.org/project/search_api
11http://drupal.org/project/search_api_solr

http://groups.drupal.org/node/71158
http://drupal.org/project/search_api
http://drupal.org/project/search_api_solr

6.3 Google 83

6.3 Google

Google offers a few services related to search in a company’s website. It has the Google Search

Appliance and the Google Site Search.

Google Search Appliance The Google Search Appliance is a rack-mounted device providing

document indexing functionality that can be integrated into an intranet, document management

system or web site using a Google search-like interface for end-user retrieval of results. The

operating system is based on CentOS.

Compared to Solr According to a case study : The Motley Fool Migrates from Google Search

Appliance to Apache Lucene/Solr Open Source Search 12 there were a few key differences between

the two platforms. Google Search Appliance benefits from an all-in-one solution where you have

a install and deploy and full support delivered with the appliance. This doesn’t come for free

naturally so there are license costs attached to it. Solr on the other hand also had a few key

benefits compared to the Google Search Appliance.

• Increased search relevancy and click-through-rate (CTR) by 40% compared to legacy search

appliance

• 48% reduction in web site exit rate (bounce)

• Big reduction in license subscription costs, and lower cost of ownership as content data

grows

• Rapid implementation; working search platform within two weeks, full production within

90 days

• Enhanced user search productivity by adding features such as sorting on both date and

relevance, spelling correction, and “Did you mean. . . ”

Drupal and Google Google also has a certain amount of projects that allow your Drupal

site to be integrated with one of their solutions. This list only discusses solutions that have a

Drupal 7 version ready.

Google Search Appliance “The Google Search Appliance module integrates a GSA

device with a Drupal site. Utilizing a GSA gives you cross-domain search functionality, which

12http://www.lucidimagination.com/why-lucid/case-studies/case-study-motley-fool-migrates-google-search-appliance-apache-solrlucene-open-source-search

http://www.lucidimagination.com/why-lucid/case-studies/case-study-motley-fool-migrates-google-search-appliance-apache-solrlucene-open-source-search

6.3 Google 84

can be aggregated into a single search experience on a drupal site.” The Google Search Appliance

is most probably used in high enterprise projects, and it seems to do well with over 1500 sites

actively reporting. Latest active commit to the project was at the moment of writing 19 weeks

ago so it is rather active.

Google Custom Search Engine “Google Custom Search Engine (CSE) is an embedded

search engine that can be used to search any set of one or more sites. No Google API key

is required. Read more at http://www.google.com/cse/.” 13 Google Custom Search Engine

seems to have a broad audience with more than 4600 sites actively reporting that they use the

service. The benefit from this Google Custom Search Engine is that it can be used without

hiring or buying any service from Google. The code did not have any update in over a year and

the Drupal 7 version is still in a development stage.

Conclusion Google does a good job in providing search solutions and there are enough Drupal

integration solutions. However, the lack of transparency and customization make Apache Solr

a challenging competitor. Adding to that sum the amount of money that should be payed up

front for licensing, makes a project lead think twice about the solution he prefers.

13http://drupal.org/project/google_cse

http://www.google.com/cse/
http://drupal.org/project/google_cse

CONCLUSIONS 85

Chapter 7

Conclusions

This chapter tries to summarize what was learned during those 5 months. Also a critical self-

reflection of the author is included.

Looking back When I look back about 5 months, I certainly have seen myself grow in the

subject. Even though I was not very new to the subject matter, I did discover a bunch of new

material that was very interesting to get my hands dirty on. Going to the deep internals of

Apache Solr and writing a plugin might have been the most challenging one, all the other tasks

required a lot of patience and a good ear and eye for community feedback. Although I do feel I

should discover more and alternate technologies and get a broader knowledge of what is available

in the field. An approximate amount of 1000 man-hours was spend working on this subject,

and I’m happy to work a bunch more of them on this same topic. On another matter I am

still very much convinced that open source is the way to go in writing code that is used for the

general public. Knowing that more than 10000 people use your code, and also care enough to

give feedback and even improving the code is a very good sign. People evolve, and so does code.

I’m sure that when I look back in a year to the same codebase it won’t be the same anymore,

and happily so! Improving yourself is also an important process in the learning curve and as

everyone in this sector one should keep learning or you’ll fall behind.

7.1 Reflection on Apache Solr

Apache Solr is a very powerful layer build upon Apache Lucene, I have had the pleasure to work

with Solr for the past 5 months very intensively and it has almost never let me down. It has

some flaws, such as not supporting the Near Realtime Search, but it will overcome those in the

7.2 Reflection on Drupal 6 and Drupal 7 in regards to search integration 86

near future hopefully. Also, having other projects like Elastic Search in the same corner is a

benefit for Apache Solr. I wouldn’t consider them competition because the only software that

Apache Solr is competing with are highly licensed software products that lack in transparency.

Software like the Google Search Appliance, but also software such as Microsoft fast are a direct

prey for open source applications. I hope to see much more development in this field and I’m

sure that my contributions have helped Acquia in improving their search farm.

7.2 Reflection on Drupal 6 and Drupal 7 in regards to search

integration

Drupal has been one of my favorite projects in the last couple of years. I could only dream of

being able to contribute such an amount of time to the project. By taking up this challenge of

having my thesis semester at Acquia I could also realize that dream. I’ve seen the amount of

websites that use the Apache Solr Module grow during my internship from 9000 to around 11000

websites. The Apache Solr 7 module even had a more spectacular growth coming from 1400 to

3050 websites. It has more than doubled its user base. As one of the maintainers, together with

a bunch of other people in the community, I am very proud to see such a growth. It can only

be concluded that it means that the community, Acquia and I did a good job in improving the

module and there is still a bunch of work to be done!

7.3 Timeline 87

7.3 Timeline

Figure 7.1: A graphical representation of the actions that occured during my internship. A

dynamic version can be found on http://timeline.nickveenhof.be/

7.4 Future Work

7.4.1 Apache Solr Search Integration

Drupal 7 has made a significant improvement in regards of its search functionality. By default,

Drupal hardly ships with a good search engine but it does allow contributed modules to plug

into the core system of Drupal and completely overtake the search functionality. The Search

API module makes very good use of this system and it seems that this project has a good

chance of replacing (or at least a small amount of it) the current code in Drupal core 8 or later.

http://timeline.nickveenhof.be/

7.4 Future Work 88

Even if that does not happen, a motivated amount of people are ready to take the next step

to keep on improving search in Drupal and as a consequence also future modules. wether this

is an integration with Apache Solr or another open source search engine, the important part is

that people stay motivated to keep improving the code and themselves. As an individual, as an

employee, and as a student I am still very motivated to keep working on Drupal, the integration

with search, myself and who knows what else. The best is yet to come!

7.4.2 Acquia Search

Acquia Search is a wonderful piece of work that was created for Apache Solr 1.4 when it first

found its offspring. Every subscription that acquia opens ships with search as a service for that

subscription’s Drupal website. Being able to work with a service that has a massive impact and

even being able to know that clients depend on the work you’ve done and within the timeframe

of your internship launch a website that utilizes your work is very pleasant and rewarding.

FEEDBACK FROM THE MENTORS AT ACQUIA 89

Chapter 8

Feedback from the mentors at

Acquia

In a recommendation of my mentor Carles Farré I have included feedback from the company

into this work.

8.1 Chris Brookins

Nick Veenhof worked for Acquia as an intern between October 2011 and Feb 2012. Acquia

is a commercial open source software company providing products, services, and technical

support for the open source Drupal social publishing system. In that time he contributed

significantly to our Acquia Search web service 1 and to the Drupal modules that work with

any Apache Solr instance including the http://drupal.org/project/apachesolr and url-

http://drupal.org/project/facetapi. These modules are GPL and are available to anyone using

the Drupal open source project. Nick did outstanding work, contributing to the following project

milestones and working as needed with other Acquia engineers.

• Enhance the Apachesolr 7.x-1.x project to the RC1 stage

• Enhance the Facetapi 7.x-1.x project to RC1 stage

• Create the Apachesolr 6.x-3.x, and get it to beta1 stage

• Create the Facetapi 6.x-3.x, and get to beta1 stage

• Ported our Java code for client authentication to work with Solr 3.5

1http://www.acquia.com/products-services/acquia-network/cloud-services/acquia-search

http://drupal.org/project/apachesolr
http://www.acquia.com/products-services/acquia-network/cloud-services/acquia-search

8.2 Peter Wolanin 90

• Upgrade an cluster of the Acquia Search service to Solr 3.5 in order to support a beta test

customer

• Develop and run load tests to compare Solr 1.4.1 and Solr 3.5 on our servers

Nick needed a minimal amount of guidance and direction and took strong initiative in all of

these projects. His work will enhance both the Drupal project and our product offering that

supports thousands of customers and millions of search requests.

8.2 Peter Wolanin

I had the role of technical mentor and the most direct supervisor for Mr. Nick Veenhof during

his internship from October 2011 and Feb 2012. Throughout most of this period Mr. Veenhof

and I had nearly daily calls to plan and discuss his work.

Mr. Veenhof came into the project already familiar with the Drupal 7 core APIs, but without

a lot of a in-depth experience with the Apache Solr Search Integration module that was the focus

of his work. He rapidly became very productive in improving and extending the code of this

module, and it was a pleasure to be able to formulate a plan with him and meet again the next

day to find a well-executed implementation.

I was particularly impressed with Mr. Veenhof’s independence and initiative in two areas.

First, he re-organized the administrative user interface for the module through an iterative

process and brought it much more in line with Drupal 7 standards. Later, during January,

he moved ahead and made initial Drupal 6 backports of the working Drupal 7 versions of the

Apache Solr Search Integration and Facet API modules.

In addition to the work on the Drupal module, Mr. Veenhof adapted our existing servlet filter

code that does authentication so it worked with the latest Solr 3.5 release. The Solr codebase

had been reorganized, so our build and integration no longer worked. We had expected to have

to hire an outside consultant, but Mr. Veenhof researched the problem and was able to solve

the problem himself. He further invested significant time validating that the Drupal integration

module worked correctly with this new version of Solr, and doing comparative performance

benchmarks between Solr 3.5 and 1.4 to validate our planned upgrade.

Mr. Veenhof has also gone above and beyond by communicating the results of his devel-

opment efforts to the larger Drupal community by presenting his work at Drupal events and

through technical blog posts, neither of which were a required part of his internship.

8.2 Peter Wolanin 91

There were very few areas where Mr. Veenhof needed any improvement. On occasion,

perhaps, Mr. Veenhof needed to be pushed to reconsider his implementation approach or to

backtrack and understand in more depth the algorithm he was trying to modify. I would

consider this mostly a reflection of his enthusiasm to move ahead in the project.

Overall, I consider his internship as tremendously productive. It delivered improvements to

the open-source code as well as to Acquia’s internal systems, and gave Mr. Veenhof the chance

to become one of the leading experts in this area.

Peter Wolanin, Ph.D. Principal Engineer, Acquia, Inc.

ACKNOWLEDGEMENTS 92

Chapter 9

Acknowledgements

Foremost, I would like to express my sincere gratitude to my

mentor at Acquia, Peter Wolanin, for his continuous eye and ear

he borrowed to me for about an hour a day. His perseverance,

vision and immense knowledge helped me in completing all the

work I’ve done. He also gave me the chance to sometimes tell me to step back and take my

time to analyze. He also answered all my questions, wether they made sense or not. So thanks

a dozen Peter!

Secondly I’d like to thanks Chris Brookins, together with Ac-

quia as a company and all the employees at Acquia for being so

awesome when it comes to support and convincing me that there

are companies around that have a vision that fits in my ideology.

I have always had a preference for Open Source companies and

companies that did things a little bit different. All of the employ-

ees at Acquia deserve eternal gratitude for what they stand for

and defending that publicly.

Also I’d like to thank Carles Farré for being my UPC mentor

and supporting me in the bureaucratic process.

Finally I also want to thank my family and my girlfriend for

their patience with me, since all I could talk about was this little blue alien! 1

1Little blue alien commonly referred as Druplicon

ACKNOWLEDGEMENTS 93

BIBLIOGRAPHY 94

Bibliography

[Brin and Page(1998)] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertex-

tual Web search engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

URL http://infolab.stanford.edu/~backrub/google.html.

[chrlov(2011)] chrlov. Some tips for solr tuning, December 2011. URL http://forum.vizrt.

com/showthread.php?t=5177.

[Ejsmont(2009)] Artur Ejsmont. Jmeter used to playback apache access logs to generate

live-like server load, October 2009. URL http://artur.ejsmont.org/blog/content/

jmeter-used-to-playback-apache-access-logs-to-generate-live-like-server-load.

[Hostetter(2009)] Chris Hostetter. Apache solr out of the box, November 2009. URL http:

//people.apache.org/~hossman/apachecon2009us/.

[Melançon et al.(2011)Melançon, Luisi, Négyesi, Lauer, Anderson, Somers, Lorétan, Szrama, Nordin, Stewart, Carlevale, Freudenberg, Corlosquet, Monks, Dolin, Stout, Wolanin, Doherty, Micka, VanValkenburgh, Sarahe, Hakimzadeh, Mars, Ryan, Boyer, Cassie, Catchpole, Gaskin, Travis, Gifford, Scholten, Albala, Scavarda, Strawn, Douglass, and Weitzman]

Benjamin Melançon, Jacine Luisi, Károly Négyesi, Michelle Lauer, Greg Anderson, Bojhan

Somers, Florian Lorétan, Ryan Szrama, Dani Nordin, Susan Stewart, Ed Carlevale, Stefan

Freudenberg, Stéphane Corlosquet, Robin Monks, Kasey Qynn Dolin, Greg Stout, Peter

Wolanin, Benjamin Doherty, Allie Micka, Kay VanValkenburgh, Claudina Sarahe, Dan

Hakimzadeh, Forest Mars, Mike Ryan, Sam Boyer, George Cassie, Nathaniel Catchpole,

Dmitri Gaskin, Brian Travis, Mike Gifford, Roy Scholten, Albert Albala, Amye Scavarda,

Jake Strawn, Robert Douglass, and Moshe Weitzman. The Definitive Guide to Drupal 7.

Apress, Springer-Verlag, New York, 2011.

[Mottram(2004)] Geoff Mottram. Using apache access logs with jmeter, September 2004. URL

http://minaret.biz/tips/jmeter.html.

[Pilone(2006)] Dan Pilone. UML 2.0 pocket reference. O’Reilly, Sebastopol, California, 2006.

http://infolab.stanford.edu/~backrub/google.html
http://forum.vizrt.com/showthread.php?t=5177
http://forum.vizrt.com/showthread.php?t=5177
http://artur.ejsmont.org/blog/content/jmeter-used-to-playback-apache-access-logs-to-generate-live-like-server-load
http://artur.ejsmont.org/blog/content/jmeter-used-to-playback-apache-access-logs-to-generate-live-like-server-load
http://people.apache.org/~hossman/apachecon2009us/
http://people.apache.org/~hossman/apachecon2009us/
http://minaret.biz/tips/jmeter.html

BIBLIOGRAPHY 95

[Pronschinske(2011)] Mitch Pronschinske. Major solr 4 highlights, December 2011. URL http:

//java.dzone.com/videos/major-solr-4-highlights.

[Seidly(2011)] Thomas Seidly. A flexible new search api, February 2011. URL http://bxl2011.

drupaldays.org/node/274.

[Smiley(2011)] David Smiley. Apache Solr 3 Enterprise Search Server. Packt publishing, Olton,

Birmingham, 2011.

[Smiley and Pugh(2009)] David Smiley and Eric Pugh. Solr 1.4 Enterprise Search Server. Packt

publishing, Olton, Birmingham, 2009.

[Tomlinson and VanDyk(2010)] Todd Tomlinson and John K. VanDyk. Pro Drupal 7 Develop-

ment. Apress, Springer-Verlag, New York, 2010.

[VanDyk(2008)] John K. VanDyk. Pro Drupal Development. Apress, Springer-Verlag, New

York, 2008.

[Wolanin and Pliakas(2011)] Peter Wolanin and Chris Pliakas. Attain apache solr

coding chops, March 2011. URL http://chicago2011.drupal.org/sessions/

attain-apache-solr-coding-chops.

Please note that not all sources are listed here. Most online sources are being referred to in

footnotes.

http://java.dzone.com/videos/major-solr-4-highlights
http://java.dzone.com/videos/major-solr-4-highlights
http://bxl2011.drupaldays.org/node/274
http://bxl2011.drupaldays.org/node/274
http://chicago2011.drupal.org/sessions/attain-apache-solr-coding-chops
http://chicago2011.drupal.org/sessions/attain-apache-solr-coding-chops

LIST OF FIGURES 96

List of Figures

4.1 Response Time for a Solr Index with over 1 Million records (Logarithmic Scale) . 23

4.2 Filter by Type example. A user clicked on Discussion 26

4.3 Configure the facets . 27

4.4 Content Recommendations can be seen in the block ”Related Posts” 27

4.5 Spelling correction . 27

4.6 UI settings backend, September 2011 . 28

4.7 UI index report backend, September 2011 . 29

4.8 UI search pages backend, September 2011 . 30

4.9 UI for result and index biasing backend, September 2011 30

4.10 Apache Solr Facetapi Integration UI as of September 2011 33

4.11 Apache Solr Facetapi Integration UI of 1 facet as of September 2011 34

4.12 Extended information about the classes in FacetAPI, September 2011 35

4.13 Class Diagram of FacetAPI, September 2011 . 36

4.14 Overview of the classes and services used for Acquia Search at the website’s end. 37

4.15 Server Side view of Acquia Search. Certain information has been blurred for

confidentiality . 38

4.16 Signing a message using a symmetric signature 39

5.1 Mini Daily Scrum worksheet . 43

5.2 Search Environments . 47

5.3 In total 227 tests assessments were written in 6 functional tests for the search

environments, all of them pass. 52

5.4 Search pages overview page . 52

5.5 Search Page Configuration : Label and Description 53

5.6 Setting : Show enabled facets’ blocks under the search box 54

LIST OF FIGURES 97

5.7 Setting : Show enabled facets’ blocks in their configured regions and first page of

all available results. As one can see it looks like a real search, but looking closer

to the search box there is no search keyword entered. 55

5.8 In total 110 tests assessments were written in 4 functional tests for the search

environments, all of them pass . 60

5.9 In total 79 test assesments were written in 3 unit tests for the search environments,

all of them pass . 63

5.10 Setting : Query type . 67

5.11 Different widgets in the user interface . 68

5.12 Speed of quering after indexing a site with 32912 Documents 75

5.13 Speed of quering after indexing a site with 4996 Documents 76

5.14 Size of the segments for all the different test results 77

5.15 A real life use case of the Facet Api Slider, implemented by Dataflow http:

//dataflow.be/. The image is a part of the UI for clients that are trying to find

a property for sale or or rent. 78

5.16 Apache Solr Sort UI sort selection . 79

7.1 A graphical representation of the actions that occured during my internship. A

dynamic version can be found on http://timeline.nickveenhof.be/ 87

http://dataflow.be/
http://dataflow.be/
http://timeline.nickveenhof.be/

	Introduction
	Web and Search
	Open Source & Community
	Personal History

	Objectives
	Description
	Acquia
	Apache Solr
	Drupal

	Exploration
	Apache Solr
	Standard Drupal Search
	Apache Solr Search Integration Drupal Module
	Facetapi Drupal module
	Acquia Search for Drupal 6 and 7

	Implementation
	Communication
	Daily communication
	Drupal Camps and seminars
	Blog Posts

	Apache Solr module for Drupal 7 version 7.x-1.0
	Search Environments
	Search pages
	Query Object
	Entity layer
	Performance optimizations

	Facet Api module for Drupal 7 version 7.x-1.0
	Facet Query Types

	Backporting Facet API And Apache Solr to Drupal 6
	Acquia Search Upgrade from 1.4 to 3.x
	Java Filter Servlet
	Performance testing

	Additional Modules created to empower users to use the Apache Solr Module suite
	Facet Api Slider
	Apache Solr Term
	Apache Solr Commerce
	Apache Solr User
	Apache Solr Sort UI

	Related Work
	Elastic Search
	Sphinx

	Search API
	Google

	Conclusions
	Reflection on Apache Solr
	Reflection on Drupal 6 and Drupal 7 in regards to search integration
	Timeline
	Future Work
	Apache Solr Search Integration
	Acquia Search

	Feedback from the mentors at Acquia
	Chris Brookins
	Peter Wolanin

	Acknowledgements

